期刊文献+

基于LSI/SVD的文本分类方法研究 被引量:1

Research on Text Classification Based on LSI/SVD
下载PDF
导出
摘要 论文通过分析传统向量空间模型(VSM)的信息检索模式和讨论基于特征项-文本矩阵的特征项赋权因子(TF-IDE)的赋值问题,提出以潜在语义索引/奇异值分解(LSI/SVD)方法为基础,采用文本相似度描述特征项语义间的联系,运用截断法来降低特征项-文本矩阵原始向量空间维数,解决特征项之间存在语义缺乏约束及向量空间维数过大的问题。仿真实验表明,该方法相对于传统向量空间模型更加高效实用。 In this paper, we analyze the traditional retrieval model which uses Vector Space Model (VSM) and discuss the weight of TFIDF (Term-Frequency Inverse-Document-Frequency) based on term-text matrix. Based on latent semantic indexing/ Singular Val- ue Decomposition (LSI/SVD) model, we use text similarity to describe relation semantic between terms and use truncation to reduce dimensionality about primitive term-text matrix. It solves the problems that VSM has no semantic restriction between terms and has a large dimensionality. We find LSI/SVD is better than VSM by simulation.
作者 龙军 彭毅
出处 《微计算机信息》 2009年第30期10-12,共3页 Control & Automation
  • 相关文献

参考文献7

  • 1G. Golub and C. Van Loan. Matrix Computations. Johns-Hop- kins, Baltimore. (M) Maryland, second edition, 1989.
  • 2H.Y.Zha,O.Marques,H.Simon.A subspace-based model for information retrieval with applications in latent semantic indexing[R].U. K.:CSETech Report CSE-98-002,1998.
  • 3黄钢石.基于非负矩阵分解的概念语义生成算法与应用研究[D].南京:南京解放军理工大学,2004.
  • 4http://icl.pku.edu.c n/icl_groups/corpus/dwldform 1 .asp.
  • 5http://ictclas.org/index.html.
  • 6Li Jingyang,Sun M,Zhang Xian.A Comparison and Semiquantitative Analysis of Words and Character-bigrams as Features in Chinese Text Categorization [C]Proceed-ings of the 21st International Conference on Computational Linguistics and the 44th AnnualMeeting of the ACL, Sydney.2006:545-552.
  • 7张冬慧,孙波,徐照财,程显毅.文本自动分类关键技术研究[J].微计算机信息,2008,24(6):197-199. 被引量:12

二级参考文献3

  • 1[1]Harry Zhang,Charles X.Ling.A Fundamental Issue of Naive Bayes,Advances in Artificial Intelligence,AI2003[C],Halifax,Canada,2003(6):591?595.
  • 2[2]Han-joon Kim,Jae-young Chang.Improving Naive Bayes Text Classifier with Modified EM Algorithm[C].ISMIS 2003:326-333.
  • 3[6]Salton G,McGill M.J.Introduction to Modern Information Retrieval[M].NewYork,McGraw-Hill,1983.

共引文献11

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部