期刊文献+

基于免疫的异常检测改进算法 被引量:1

An improved algorithm of anomaly detection based on IMMUNOLOGY
下载PDF
导出
摘要 为了解决异常检测中误报率高、自适应性差的问题,本文提出了一种基于免疫的异常检测改进算法。考虑到系统调用序列的稳定性,算法采用特权程序的系统调用短序列作为抗原与抗体,并建立了基于特权程序的系统调用的Markov模型优化抗体库的变异方向。实验结果表明,该算法相比已有的异常检测算法具有自适应、误报率低的优点,相比传统免疫算法具有变异成功率高、计算量小的优点。 In order to solve the problem of high false positive rate and low adaptability, an improved algorithm of anomaly detection based-on immunology is presented in this paper. Considering the stability of system calls, the algorithm uses the system call sequence of privileged program as antigen and antibody and establishes a Markov model to optimize the variation of antibody set. The experiment shows that the algorithm is more adaptable than other algorithms and has a low false positive rate. Meanwhile, comparing to traditional immune algorithms, the algorithm has higher successful variation rate and less computation.
作者 李晓蓉 庄毅
出处 《微计算机信息》 2009年第30期64-65,81,共3页 Control & Automation
基金 基金申请人:佟占杰 庄毅 基金颁发部门:国防科工委(编号不公开)
关键词 人工免疫 异常检测 马尔可夫 Artificial Immunity Anomaly detection narkov
  • 相关文献

参考文献7

  • 1Lane T. Carla E B. An empirical study of two approaches to sequence learning for anomaly detection [J]. Machine Learning, 2003, 51(1): 73-107.
  • 2Lane T. Machine learning techniques for the computer security domain of anomaly detection [D]. Purdue University, 2000.
  • 3Hofmeyr S A, Forrest S, Somayaji A. Intrusion detection using sequences of system calls [J].Journal of Computer Security, 1998, 6 (3): 151-180.
  • 4Forrest S, Hofmeyr S A, Somayaji A. Computer immunology [J]. Communications of the ACM, 1997, 40(10): 88-96.
  • 5Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: Ahernative data models [C]. Proc of the 1999 IEEE Syrup on Security and Privacy, Los Alamitos, 1999. IEEE Computer Society Press, 1999,133-145.
  • 6Lee W, Dong X. Information-Theoretic Measures for Anomaly Detection [C]. Proceedings IEEE Symposium on Security and Privacy, Oakland, California, USA, 2001. IEEE Computer Society Press, 2001.
  • 7刘孙俊,李涛,赵奎,胡强,彭凌西.基于人工免疫的网络安全态势评估模型[J].微计算机信息,2008,24(18):22-24. 被引量:6

二级参考文献3

  • 1徐晓帆.基于免疫的入侵检测模型与通信应用研究[J].微计算机信息,2007,23(20):220-222. 被引量:3
  • 2Junwon Kim and Peter J. Bentley. A Model of Gene Library Evolution in the Dynamic Clonal Selection Algorithm. Proceedings of the ICARIS First International Conference on Artificial Immune Systems (ICARIS) Canterbury,, September 9-11, 2002:57265.
  • 3Stephanie Forrest and Alan S. Perelson. Self-Nonself Diserimination in a Computer. 1994 IEEE Symposium on Security and Privacy, Oakland, CA.1999:132-135.

共引文献5

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部