期刊文献+

基于支持向量机的中长期入库径流预报 被引量:5

Long-term Runoff Forecast Based on the Support Vector Machine
下载PDF
导出
摘要 采用基于支持向量机的预测模型对水库中长期入库径流进行预报,建立径流预报的SVM模型。预报因子的优劣决定着预测精度的高低。为了提高预报精度,尝试采用模糊优选法对预报因子进行优选。将所建模型应用于新疆雅马渡站的径流预测中,并与没有进行预报因子优选的SVM模型进行比较。结果表明,进行预报因子优化后的SVM模型明显提高了径流的预报精度,具有更高的应用价值。 Forecast model based on the support vector machines to forecast the reservoir long-term runoff is used and the SVM runoff forecast model is established. The merits of forecast factors determine the level of forecast accuracy. In order to improve forecast accuracy, the fuzzy optimization method is tried to optimize forecast factors. The model is applied to the runoff forecast of Yamadu Station in Xinjiang, and compared with the SVM model which has not optimized the forecast factors. The results show that the SVM model which has optimized the forecast factors significantly increases the runoff forecast accuracy and has better value.
出处 《黑龙江水专学报》 2009年第3期1-4,共4页 Journal of Heilongjiang Hydraulic Engineering College
基金 科技部重大基础研究前期研究专项自助项目(2004CCA02500)
关键词 支持向量机(SVM) 径流预报 预报因子 support vector machine(SVM) runoff forecast forecast factor
  • 相关文献

参考文献5

二级参考文献36

共引文献2525

同被引文献45

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部