摘要
GPU体系结构的革新和相应开发平台的发展使得GPU广泛地应用于科学计算领域。通过深入地分析GPU体系结构和存储层次的优缺点以及GPU上的关键性能特征,阐明了GPU体系结构、编程模型和存储层次之间的关系。针对GPU异构系统上的应用映射提出三种基本负载均衡优化策略:预取、流化、任务划分。试验结果揭示了不同的优化因子与优化效率之间的具体关联。
Owing to the revolution of GPU architecture and improvement of developing platforms, GPU is widely used in scientific computing nowadays. Relationships among GPU architecture, programming model and memory hierarchy are illustrated by analyzing memory hierarchy and exploring key performance featmes of GPU. Three basic load balance strategies on mapping applications onto GPU are presented: Prefetch, stream computing, task division. The effective relationships among different factors and optimization efficiency are tested and exposed by experiments.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2009年第5期38-43,共6页
Journal of National University of Defense Technology
基金
国家自然科学基金资助项目(60873016)
国家863计划资助项目(2009AA01Z102)
教育部"高性能微处理器技术"创新团队资助项目(IRT0614)