期刊文献+

散热环境对高温超导带材失超传播速度的影响 被引量:4

Effect of Heat Dissipation Medium on Quench Propagation Velocity in High Temperature Superconducting Tapes
下载PDF
导出
摘要 对Bi2223/Ag高温超导带材在制冷机环境下的失超传播特性进行测量,主要研究横向散热介质对纵向失超传播速度的影响。在样品带材的两个侧面贴敷不同的散热介质,由热电偶监测样品带在不同传输电流和工作温度时的失超温度轨迹,进而得到超导带材的纵向失超传播速度变化规律。结果表明,超导带材的横向散热环境越好,纵向失超传播速度越慢,通过改善超导体横向散热结构可以大幅提高超导体稳定性。这对超导磁体的饼式线圈设计和高温超导体的稳定性研究有重要意义。 The quench propagation property was measured of Bi2223/Ag HTS tape under the GM-205 cryocooler environment in order to study the effect of transverse heat dissipation medium on the longitudinal quench propagation velocity. Different heat dissipation mediums were affixed to the two sides of Bi2223/Ag tape, the quench temperature traces were monitored by copper-constantan thermocouples under the condition of various transport currents and operating temperatures, and thus the variational rule of longitudinal quench propagation velocity can be obtained. The results indicate that the longitudinal quench propagation velocity is small when the transverse heat dissipation environment is better. Consequently, it can greatly enhance stability of superconducting magnet through improving the transverse heat dissipation environment of superconducting tape. They are significant for the pancake coils design of superconducting magnet and the stability research of high temperature superconductor.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第A04期67-70,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金资助(50777006)
关键词 高温超导带材 失超传播速度 散热介质 制冷机 high temperature superconducting tape quench propagation velocity heat dissipation medium cryocooler
  • 相关文献

参考文献11

  • 1Bai Zhiming, Wu Xia, Wu Chunli et al. Physica C[J], 2006, 436:99.
  • 2Yukikazu Iwasa. Cryogenics[J], 2003, 43:303.
  • 3Kim S B, Ueno Y, Ishiyama A. IEEE Trans on Magn[J], 1996, 32(3): 2822.
  • 4Tomokazu Tsuchiya, So Noguchi, Hideo Yamashita. Materials Processing Technology[J], 2005, 161:10.
  • 5Watanabe K, Hoshi A, Awaji S et al. IEEE Trans Appl Superconductivity[J], 1993, 3(1): 1006.
  • 6Watanabe K, Awaji S, Katagiri K et al. IEEE Trans Magnetics[J], 1994, 30(4): 1871.
  • 7Watanabe K, Motokawa M, Onodera T et al. Proceedings of the 5th International Symposium on Functionally Graded Materials[C], 1998, 561.
  • 8Gourab Bansal, Nagato Yanagi, Tsutomu Hemmi et al. Fusion Engineering and Design[J], 2006, 81 : 2485.
  • 9Wu Chunli, Bai Zhiming, Li Jinghui et al. Physica C[J], 2003, 386:166.
  • 10Wu Chunli, Bai Zhiming, Li Jinghui et al. Physica C[J], 2003, 386:162.

同被引文献35

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部