期刊文献+

Bi-2212/Ag多芯线(带)材的制备 被引量:2

Fabrication of Bi-2212/Ag Mutifilamentary Tapes and Wires
下载PDF
导出
摘要 系统研究了Bi-2212导体的成材制备技术,通过优化粉末的热处理制度,获得了主相纯度高、各相分布均匀、粒度适宜和碳含量较低的装管粉末;并采用PIT和部分熔化相结合的线(带)材制备方法成功制备出临界电流密度(Jc)为205kA/cm2(4.2K,19T)的37芯带材和104kA/cm2(4.2K,19T)的37芯线材。 We successfully fabricated multifilamentary Bi-2212 wires and tapes by the powder-in-tube process combined with the partial melting-solidification process. Much work has been done to prepare ultrafine precursor powder with specific stoichiometry, excellent homogeneity, low impurity content and suitable phase assemblage. The optimization of the powder synthesis, the partial melting-solidification parameters, as well as the microstructure of filaments are given here. In short samples with current densities over 200 kA/cm^2 (4.2 K, 19 T) and 100 kA/cm^2 (4.2 K, 19 T) have been achieved for tapes and wires, respectively.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第A04期137-141,共5页 Rare Metal Materials and Engineering
基金 陕西省13115重大科技专项项目(2007ZDKG-45)
关键词 Bi-2212多芯线(带)材 部分熔化工艺 临界电流密度Jc Bi-2212/Ag mutifilamentary tapes and wires the partial melting-solidification process Jc
  • 相关文献

参考文献11

  • 1Buta F, Sumption M D, Collings E W. IEEE Trans Appl Supercond[J], 2003, 13:3458.
  • 2Weijers H W et al. IEEE Trans Appl Supercond[J], 1999, 9: 563.
  • 3Weijers H W et al. Supercond Sci Technol[J], 2004, 17:636.
  • 4Miao H, Marken K R, Meinesz M et al. IEEE Trans Appl Supercond[J], 2005, 15:2554.
  • 5Joachim Bock. WAMS2004[R], Archamps: Nexans Superconducting Co Ltd, 2004.
  • 6Pignon B, Veron E, Noudem J et al. Physica C[J], 2006, 434: 45.
  • 7Thangaraj K, Iyer A N, Zhang L et al. Supercond Sci Technol[J], 2000, 13:1035.
  • 8Yamashita T, Iiyushechkin A Y, Talbot P. Supercond Sci Technol[J], 2000, 13:1575.
  • 9Hasegawa T, Kitamura T, Kobayashi H et al. Appl Phys Lett[J], 1992, 60:2692.
  • 10Noji H, Zhou W, Glowacki B A et al. Appl Phys Lett[J], 1993,63:833.

同被引文献9

  • 1Miao H, Marken K R, Meinesz M. Development of round multifilament Bi-2212/Ag wires for high field magnet appli- cations[J]. IEEE Trans Appl Supercond, 2005,15 : 2554.
  • 2Kitaguchi H, Kumakura H, developing high-field Bi-2212 Week, 2011,25 : 1.
  • 3Togano K, et al. VHF-SMC magnets [J]. Superconductor Zhang W, Hellstrom E E. The effects of oxygen on melt- processing Ag-sheathed Bi2 Sr2 CaCu2O8 conductors[J]. Su- percond Sci Techn, 1995,8 : 430.
  • 4Shen T, Jiang J, Kametani F, et al. Filament to filament bridging and its influence on developing high critical currentdensity in muhifilamentary Bi2 Sr2 CaCu2 Ox round wires[J]. Supercond Sci Techn, 2010,23 : 025009.
  • 5Godeke A, Acosta P, Cheng D, et al. Win&an&react Bi- 2212 coil development for accelerator magnets[J]. Super- cond Sei Techn, 2010,23 : 034022.
  • 6Jiang J, Starch W L, Hannion M, et al. Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density[J]. Supercond Sci Techn, 2011,24 : 082001.
  • 7Markiewicz W D, Miller J R, Schwartz J. Perspective on a superconducting 30 T/1.3 GHz NMR spectrometer magnet [J]. IEEE Trans Appl Supercond, 2006,16,1523.
  • 8Ohata K, Sato J, Okada M. Development of a new Bi-2212 round wire[J]. Hitachi Cable Rev, 1999,18 : 81.
  • 9华志强,李月南,郑明辉.Commercial Processof Bi-based 2212 Single Phase Superconducting Precursor Powder[J].Rare Metals,1999,18(1):61-65. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部