期刊文献+

基于自适应认知域的粒子群性能改进方法 被引量:5

An Improved PSO Method Based on Adaptive Cognitive Domain
原文传递
导出
摘要 为提高粒子群算法的收敛性能,提出一种自适应粒子认知域方法.在粒子位置的更新方法中,粒子运动到当前的最好位置由计算得到的最好位置为中心,粒子的认知方向为导向来确定.利用线性惯性下降权重来实现粒子的优化.为验证该方法的有效性,将此方法应用于3种不同的粒子群方法,分别是固定权重粒子群方法、线性下降权重粒子群方法及阶梯形群体粒子群算法.实验结果表明此方法是较有效的. To improve the convergent performance of particle swarm optimization( PSO), an adaptive cognitive domain particle swarm optimization (ACDPSO) method is proposed. In the updating equations of particles, the current best position, which the particle achieves, is determined by the center of the best calculated position and the cognizant direction of the particle. Linear decreasing inertia weight is used to optimize particles. Three different PSOs, particle swarm with constant weight (CWPSO), linear decreasing inertia weight PSO (LDWPSO) and Ladder PSO (LPSO), are combined with the proposed method to test the performance of the proposed method, and the results indicate that the proposed method is effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期726-730,共5页 Pattern Recognition and Artificial Intelligence
基金 教育部科学技术研究重点项目(No.209057) 安徽省自然科学基金项目(No.090412070) 高等学校省级优秀青年人才基金项目(No.2009SQRZ088ZD) 高等学校省级自然科学研究项目(No.KJ2009B062)资助
关键词 粒子群优化(PSO) 线性下降权重粒子群(LDWPSO) 认知域 阶梯形群体粒子群算法(LPSO) Particle Swarm Optimization (PSO), Linear Decreasing Inertia Weight PSO (LDWPSO), Cognitive Domain, Ladder PSO (LPSO)
  • 相关文献

参考文献10

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Network. Perth, Australia, 1995 : 1942 - 1948.
  • 2Seo J H, Im C H, Heo C G, et al. Muhimodal Function Optimization Based on Particle Swarm Optimization. IEEE Trans on Magnetics, 2006, 42(4) : 1095 - 1098.
  • 3Yi Da, Ge Xiuyun. An Improved PSO-Based ANN with Simulated Annealing Technique. Neurocomputing, 2005, 63:527-533.
  • 4Chatterjee A, Siarry P. A PSO-Aided Neuro-Fuzzy Classifier Employing Linguistic Hedge Concepts. Expert Systems with Applications:An International Journal, 2007, 33 (4) : 1097 - 1109.
  • 5Peram T, Veeramachaneni K, Mohan C K. Fitness-Distance-Ratio Based Particle Swarm Optimization//Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003 : 174 - 181.
  • 6Kaewkamnerdpong B, Peter J B. Perceptive Particle Swarm Optimisation: An Investigation // Proc of the IEEE Swarm Intelligence Symposium. Pasadena, USA, 2005 : 169 - 176.
  • 7Yang Chunming, Simon D. A New Particle Swarm Optimization Technique// Proc of the 18th International Conference on Systems Engineering. Las Vegas, USA, 2005 : 164 - 169.
  • 8Baskar S, Suganthan P N. A Novel Concurrent Particle Swarm Optimization// Proc of the Congress on Evolutionary Computation. San Diego, USA, 2004 : 792 - 796.
  • 9van den Bergh F, Engelbrecht A P. A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences, 2006, 176 (8) : 937 -971.
  • 10陈得宝,赵春霞.阶梯型粒子群算法及在函数优化中的应用[J].系统仿真学报,2007,19(24):5659-5662. 被引量:10

二级参考文献12

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2高鹰,谢胜利,许若宁,李朝晖.基于粒子群优化算法的稀疏信号盲分离[J].系统仿真学报,2006,18(8):2264-2266. 被引量:11
  • 3J Kennedy, R C Eberhart. Particle Swarm optimization [C]// Proc. IEEE international Conference on Neural Network. USA: IEEE Press, 1995, 4: 1942-1948.
  • 4J H Seo, C H Im, C G Heo, et al. Multimodal Function Optimization Based on Particle Swarm Optimization [J]. IEEE Trans. On Magnetics (S0018-9464), 2006, 42(4): 1095-1098.
  • 5Y Shi, R C Eberhart. A modified Swarm Optimizer [C]// Proceedings of IEEE International Conference on Evolutionary Computation. NJ: IEEE Press, Piscataway, 1998: 69-73.
  • 6X H Shi, Y C Liang, H P Lee, C Lu, L M Wang. An improved GA and a novel PSO-GA-based hybrid algorithm [J]. Imformation Processing Letters (S0020-0190), 2005, 93(5): 255-261.
  • 7Natsuki Higasshi, Hitoshi Iba. Particle swarm optimization with Gaussian mutation [C]// Proceedings of the IEEE Swarm Intelligence Symp. Indianapolis: IEEE Inc., 2003:72-79
  • 8M Clerc, J Kennedy. The Particle swarm-Explosion, stability and convergence in a multi-dimensional complex space [J]. IEEE Trans. Evol.Comput. (S1089-778X), 2002, 6 (1) : 58-73.
  • 9Y Shi, R C Eberhart. A modified Swarm Optimizer [C]// Proceedings of IEEE International Conference on Evolutionary Computation. NJ: IEEE Press, Piscataway, 1998: 69-73
  • 10F Femondez, M Tomassini, L Vanneschi. Saving Computational Effort in Genetic Programming by means of Plagues [C]//R Sarker, R Reynolds, H Abbass, et aL editors, CEC-2003, pages 2042-2049. The 2003 Congress on Evolutionary Computation, (CEC'03), USA: IEEE Press: Sarker, R Reynolds, H Abbass, et al, 2003: 2042-2049.

共引文献9

同被引文献62

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部