期刊文献+

一种基于图像底层特征的隐马尔可夫人体检测方法 被引量:2

Low-Level Image Features Based Human Body Detection Using Hidden Markov Model
原文传递
导出
摘要 提出一种单幅图像中的人体检测方法.该方法用隐马尔可夫模型表示人体,根据给定的人体结构序列估计产生该序列的图像区域,从而将人体检测问题转化为隐马尔可夫解码问题求解.首先对图像进行Mean-Shift分割,并根据颜色信息搜索出属于躯干的区域,然后将明暗度、颜色及边缘3种底层特征相结合,估计特征匹配概率并由此获得四肢部分的候选区域.最后估计候选区域的连接概率并利用隐马尔可夫解码算法找出最优的人体配置区域.实验结果表明,该方法对于复杂背景中具有不同姿态的人体图像可得到较满意的检测结果.和其它检测方法相比,该方法并非单纯地给出矩形近似的人体各个部分,同时还获得较完整分割的人体图像.尤其对于图像分辨率较低、图像中的人体较小且存在运动模糊的情况,该方法能够获得较好的检测结果. A method for human body detection from single image is presented. A hidden Markov model (HMM) is used to represent the human body. Based on the given series of human body configuration, the best image segments are inferred. Thus, the problem of human body detection is transformed into a HMM decoding one. Firstly, the image is segmented using Mean-Shift based procedure and the torso regions are searched according to color information. Secondly, the low-level features of shading, color and contour are combined to estimate the probability of feature matching and find the limb candidates. Finally, the connection probabilities of candidates are computed and the best fit human body regions are inferred by HMM decoding algorithm. The experimental results indicate that the proposed detection method detects reasonable human body well even from images with complex background and various pose. Compared with other detection methods, the proposed method approximates the body parts by rectangles and gets the integrally segmented human region. Moreover, it adapts to the low resolution images or images with people who are small or suffer from motion blur.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期743-749,共7页 Pattern Recognition and Artificial Intelligence
基金 科技奥运专项基金子课题项目资助(No.2005BA904B04-3)
关键词 人体检测 特征匹配 隐马尔可夫模型(HMM) Human Body Detection, Feature Matching, Hidden Markov Model (HMM)
  • 相关文献

参考文献18

  • 1Moeslund T B, Hilton A, Kruger V A Survey of Advances in Vision-Based Human Motion Capture and Analysis. Computer Vision and Image Understanding, 2006, 104(2): 90-126.
  • 2李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述[J].计算机辅助设计与图形学学报,2006,18(11):1645-1651. 被引量:31
  • 3孙庆杰,吴恩华.基于矩形拟合的人体检测[J].软件学报,2003,14(8):1388-1393. 被引量:13
  • 4Moil G, Ren Xiaofeng, Efors A A, et al. Recovering Human Body Configurations: Combining Segmentation and Recognition//Proe of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ : 326 -333.
  • 5Ren Xiaofeng, Berg A C, Malik J. Recovering Human Body Configurations Using Pairwise Constraints between Parts // Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, I : 824-831.
  • 6Felzenszwalb P F, Huttenlocher D P. Pictorial Structures for Object Recognition. International Journal of Computer Vision, 2005, 61 (1) : 55 -79.
  • 7Ioffe S, Forsyth D A. Probabilistic Methods for Finding People. International Journal of Computer Vision, 2001,43 ( 1 ) : 45 - 68.
  • 8Ronfard R, Schmid C, Triggs B. Learning to Parse Pictures of People// Proc of the 7th European Conference on Computer Vision. Copenhagen, Denmark, 2002 : 700 - 714.
  • 9Hua Gang, Yang M H, Wu Ying. Learning to Estimate Human Pose with Data Driven Belief Propagation//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 747 -754.
  • 10Zhang Jiayong, Liu Yanxi, Luo Jiebo, et al. Body Localization in Still Images Using Hierarchical Models and Hybrid Search//Proc of the IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. New York, USA, 2006, Ⅱ: 1536-1543.

二级参考文献52

  • 1陈睿,刘国翌,赵国英,张俊,李华.基于序列蒙特卡罗方法的3D人体运动跟踪[J].计算机辅助设计与图形学学报,2005,17(1):85-92. 被引量:21
  • 2刘国翌,陈睿,邓宇,李华.基于视频的三维人体运动跟踪[J].计算机辅助设计与图形学学报,2006,18(1):82-88. 被引量:9
  • 3Mohan A, Papageorgiou C, Poggio T. Example-Based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(4):349--361.
  • 4Haritaoglu I, Harwood D, Davis LS. W^4: who? when? where? what? A real time system for detecting and tracking people. In: Mase K, ed. Proceedings of the International Conference on Automatic Face and Gesture Recognition. Nara: IEEE Press, 1998. 222-227.
  • 5Wren CR, Azarbayejani A, Darrell T, Pentland AP. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):780-785.
  • 6Oren M, Papageorgious C, Sinha P, Osuna E, Poggio T. Pedestrian detection using wavelet templates. In: Nevatia It, ed.Proceedings of the IEEE Conference Computer Vision and Pattern Recognition. Puterto Rico: IEEE Press, 1997. 193-199.
  • 7Forsyth DA, Fleck MM. Body plans. In: Nevatia R, ed. Proceedings of the IEEE Conference Computer Vision and Pattern Recognition. Puterto Rico: IEEE Press, 1997. 678-683.
  • 8Fleck MM, Forsyth DA, Bregler C. Finding naked people. In: Buxton BF, Cipolla R, eds. Proceedings of the Europe, an Conference of Computer Vision. Berlin: Springer-Verlag, 1996. 593-602.
  • 9Forsyth DA, Fleck MM. Automatic detection of human nudes. International Journal of Computer Vision, 1999,32(1):63-77.
  • 10Ioffe S, Forsyth DA. Probabilistic methods for finding people. International Journal of Computer Vision, 2001,43(1):45-68.

共引文献42

同被引文献6

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部