期刊文献+

基于直推式支持向量机的图像检索

Image Retrieval Based on Transductive Support Vector Machine
原文传递
导出
摘要 为缩小图像的低层特征与高层语义之间的语义鸿沟,基于支持向量机的相关反馈机制受到越来越广泛的关注,但这种方法并没有利用未标记样本的隐含信息.为更好地利用这些信息,提出将直推式支持向量机作为反馈过程中的学习算法.通过分析其所用特征向量的特点,设计一种颜色稀疏特征,并将其与纹理特征结合作为图像描述的特征.实验结果表明该方法较令人满意,同时也说明直推式支持向量机可在文本分类以外的领域取得较好结果. To reduce the gap between low-level image features and high-level semantic concept, support vector machine based relevance feedback draws more and more attentions. However, the information embedded in unlabeled samples is not utilized in that method. In order to exploit these information sufficiently, the transductive support vector machine (TSVM) is introduced into feedback process. Based on analyzing the characters of feature vector for TSVM, a color sparse feature is designed as the image description feature combined with the texture feature. Experimental results show that the proposed method is more discriminative than the feedback process using support vector machine (SVM) , and TSVM obtains good results when applied to other fields.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期774-779,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60702033 60772076 60832010) 国家863计划项目(No.2007AA01Z171) 黑龙江省杰出青年科学基金项目(No.JC200611)资助
关键词 图像检索 相关反馈 直推式支持向量机(TSVM) 特征提取 Image Retrieval, Relevance Feedback, Transductive Support Vector Machine (TSVM), Feature Extraction
  • 相关文献

参考文献19

  • 1Rui Yong, Huang T S, Ortega M, et al. Relevance Feedback: A Power Tool in Interactive Content-Based Image Retrieval. IEEE Trans on Circuits and System for Video Technology, 1998, 8 (5) : 644 - 655.
  • 2马超,唐治德.相关反馈技术在图像检索系统中的应用[J].重庆科技学院学报(自然科学版),2007,9(1):81-84. 被引量:5
  • 3Vapnik V N. The Nature of Statistical Learning Theory. New York, USA : Springer-Verlag, 1995.
  • 4Zhou Zhihua, Chen Keijia, Jiang Yuan. Exploiting Unlabeled Data in Content-Based Image Retrieval//Proc of the 15th European Conference on Machine Learning. Pisa, Italy, 2004 : 525 - 536.
  • 5Qiu Bo, Xu Changsheng, Tian Qi. Efficient Relevance Feedback Using Semi-Supervised Kernel-Specified K-means Clustering// Proc of the 18th International Conference on Pattern Recognition. Hongkong, China, 2006,Ⅲ : 316 -319.
  • 6Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. San Francisco, USA, 1999 : 200 - 209.
  • 7Vapnik V N. Statistical Learning Theory. New York, USA : Wiley, 1998.
  • 8万华林,Morshed U.Chowdhury.基于支持向量机的图像语义分类(英文)[J].软件学报,2003,14(11):1891-1899. 被引量:34
  • 9Wang Ye, Huang S T. Training TSVM with the Proper Number of Positive Samples. Pattern Recognition Letter, 2005, 26 (14): 2187 -2194.
  • 10Bennett K P, Demiriz A. Semi-Supervised Support Vector Machines [ EB/OL]. [ 1998-07-21 ]. http://wwwl, cs. columbia. edu/- dplewis/candidacy/bennett98semisupervised, pdf.

二级参考文献55

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部