期刊文献+

自由阻尼悬臂梁瞬态响应的近似解析解 被引量:2

Approximate analytical solutions to the transient response of unconstrained damped cantilever beams
原文传递
导出
摘要 利用汉密尔顿原理推导出了自由阻尼悬臂梁的控制方程,计算了各阶模态自由阻尼悬臂梁的振动频率;然后根据模态叠加的方法构造悬臂梁的挠度函数,再利用虚功原理推导出集中力突然撤去情况下的自由阻尼悬臂梁瞬态响应近似解析解.算例分析表明:推导的公式准确可靠,且该方法简单,便于应用于工程计算. The vibration equations for unconstrained damped cantilever beam are derived by using Hamilton′s principle,and the natural frequencies for each of modes of cantilever beam are obtained.The deflection of cantilever beam is established by mode superposition.Approximate analytical solutions to the transient response of unconstrained damped cantilever beam when the concentrated force is withdrawn suddenly are obtained.Numerical results show that equations are accurate and reliable.The method is simple,and can be easily used in engineering application.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期108-110,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10572150)
关键词 悬臂梁 自由阻尼 瞬态响应 汉密尔顿原理 模态叠加 cantilever beam unconstrained damping transient response Hamilton′s principle modes superposition
  • 相关文献

参考文献5

二级参考文献38

  • 1王子昆,陈庚超.压电材料空间轴对称问题的通解及其应用[J].应用数学和力学,1994,15(7):587-598. 被引量:13
  • 2丁皓江,王国庆,梁剑.压电介质平面问题的一般解和基本解[J].力学学报,1996,28(4):441-448. 被引量:18
  • 3Lee J S, Jiang L Z. A bounday integral formulation and 2-D fundamental solutions for piezoelectric media. Mechanics Research Communication, 1994,21(1) :47-54.
  • 4Wang Z, Zheng B. The general solution of three-dimensional problem in piezoelectric media. Int J Solids Struct, 1995,32:105-115.
  • 5Ding H J, Chen B, Liang J. General solutions for coupled equations for piezoelectric media. Int J Solids Struct, 1996,33:2283-2298.
  • 6Heliger P. Exact solutions for simply supported laminated piezoelectric plates. Journal of Applied Mechanics, 1997,64 :299-306.
  • 7Parthasarathy G, Reddy C V R. Partial coverage of rectangular plates by unconstrained layer damping treatments [J]. J. Sound Vih., 1985, 102: 203~216.
  • 8Mukherje A, Mukhopadhyay M. Review of dynamic behavior of stiffened plates [J]. Shock Vib. Dig. , 1986, 18 (6): 3~8.
  • 9Mead D J, Yaman Y. The harmonic response of rectangular sandwich plates with multiple stiffening: A flexural wave analysis [J]. J. SoundVib., 1991, 145 (3): 409~428.
  • 10Ohtomi K. Free vibration of rectangular plates stiffened with viscoelastic beam [J]. J. Applied Mech. Trans. ASEM. 1985, 52 (2): 397~401.

共引文献24

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部