期刊文献+

基于复杂度特征的未知雷达辐射源信号分选 被引量:45

Sorting Unknown Radar Emitter Signal Based on the Complexity Characteristics
下载PDF
导出
摘要 当前的未知雷达辐射源信号分选方法存在准确率不高和对噪声敏感的问题。该本文应用复杂度特征实现了低信噪比下未知复杂雷达信号的高准确率分选。首先,对接收到的信号进行预处理,然后提取其复杂度特征中的盒维数和稀疏性,并将两者作为分选的特征参数,最后基于KFCM算法实现未知雷达辐射源信号的分选。由仿真结果分析可知,预处理后的信号序列的盒维数和稀疏性分离度高且受噪声的影响小,分选结果令人满意,在信噪比为5dB时,不同调制类型信号间的分选准确率最低为87%。 Radar emitter sorting rate of current methods is not high and they are sensitive to the Signal Noise Ratio(SNR).In this paper,complexity characteristics are applied to sorting unknown complicated radar signal and a high sorting rate is got.The received signal is pretreatment firstly,then the box dimension and sparseness are extracted and they are used as sorting characteristics.Finally,the sorting is completed by KFCM algorithm.By simulation results,the box dimension and sparseness of pretreatment signal sequence are distinguishable and they are not sensitive to SNR,and the lowest sorting rate of different signal is 87% at SNR=5 dB.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2552-2556,共5页 Journal of Electronics & Information Technology
关键词 雷达信号分选 复杂度 盒维数 信噪比 Radar signal sorting Complexity Box dimension SNR
  • 相关文献

参考文献10

  • 1Nelson D J. Special purpose correlation functions for Improved signal detection and parameter estimation[C]. ICASSP, Minneapolis, USA, 1993, 4: 73-76.
  • 2Nishiguchi K and Kobayashi M. Improved algorithm for estimating pulse repetition intervals [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 407-421.
  • 3郭杰,陈军文.一种处理未知雷达信号的聚类分选方法[J].系统工程与电子技术,2006,28(6):853-856. 被引量:26
  • 4Zhang Ge-xiang, Rong Hai-na, Hu Lai-zhao, and Jin Wei-dong. Entropy feature extraction approach of radar emitter signals [C]. Proceedings of International Conference on Intelligent Mechatronics and Automation, Chengdu, China, 2004: 621-625.
  • 5普运伟,金炜东,朱明,胡来招.雷达辐射源信号模糊函数主脊切面特征提取方法[J].红外与毫米波学报,2008,27(2):133-137. 被引量:49
  • 6Han Jun, He Ming-hao, Mao Yan, and Ren Ming-qiu. A new method for recognizing radar radiating-source [C]. ICWAPR, Beijing, China, 2007, 4: 1665-1668.
  • 7吕铁军,郭双冰,肖先赐.基于复杂度特征的调制信号识别[J].通信学报,2002,23(1):111-115. 被引量:19
  • 8Yang Jian-chao, Wright J, Huang T, and Ma Yi. Image super-resohltion as sparse representation of raw image patches[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008:1-8.
  • 9何昭水,谢胜利,傅予力.信号的稀疏性分析[J].自然科学进展,2006,16(9):1167-1173. 被引量:12
  • 10Wang Li-wei, Zhu Yuan-qing, and Pan Ying-feng. FCM algorithm and index CS for the signal sorting of radiant points[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007: 4415-4419.

二级参考文献28

共引文献99

同被引文献259

引证文献45

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部