期刊文献+

基于MAR-MRF的SAR图像分割方法 被引量:13

SAR Image Segmentation Based on Multiscale AutoRegressive and Markov Random Field Models
下载PDF
导出
摘要 该文提出了一种基于多尺度自回归模型和马尔科夫随机场的SAR图像分割算法。算法引入多尺度自回归模型,建立层与层之间以及相邻层的像素点之间的数学关系,并将此模型与马尔科夫分割算法结合,实现了更为合理的多尺度分割策略。通过相邻尺度的依赖关系及同一尺度空间的马尔可夫性,使用多尺度自回归模型的预测结果来引导精细尺度图像分割,不仅使得最细尺度下的分割迭代次数减少;而且去除了最细尺度下多余的误分类斑块;同时还能够分割出清晰、平滑的目标边界,实现了较满意的SAR图像分割。 A method of SAR image segmentation based on Multiscale AutoRegressive and Markov Random Field (MAR-MRF) models is presented. MAR models is used to establish mathematic relationship among different image layers, and is combined with Markov Random Field (MRF) segment models. This method takes into account the dependence of neighbor layers Markov property of the same layer, and uses forecasting result of the MAR models to direct the fine layer segmentation. Experimental results on SAR image show that this method reduces the iterative times of segmentation and inaccuracy classify blocks, and gets clear and smooth object border.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2557-2562,共6页 Journal of Electronics & Information Technology
基金 中国科学院电子学研究所创新项目资助课题
关键词 SAR图像处理 多尺度自回归 马尔科夫随机场 多尺度分割 吉布斯随机场 SAR image processing Multiscale AutoRegressive(MAR) Markov Random Field(MRF) Multiscale segmentation Gibbs Random Field(GRF)
  • 相关文献

参考文献12

  • 1Xue Xiao-rong, Zhang Yan-ning, Zhao Rong-chun, Duan Feng, and Chen Yi. A new method of SAR image segmentation based on neural network. Computer Intelligence and Multimedia Application, ICCIMA 2003, Xi'an, China, 2003: 149-153.
  • 2Cao Lan-ying, Zhang Kun-hui, and Xia Liang-zheng. SAR Image segmentation by 2-Dfussy entropy. Geoscience and Remote Sensing Symposium, 2004. IGARSS apos, 04 processing. Anchorage, Alaska, USA, 2004, Vol.6: 3798-3801.
  • 3Fjortoft R, Lopes A, Marthon P, and Cubero-Castan E. An optimal multiedge detector for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 1998 36(3): 793-802.
  • 4Chen Ju and Moloney C R. An edge-enhanced segmentation method for SAR images. IEEE 1997 Canadiam Conference on Electrical and Computer Engineering, St. Johns, Nfld., Canada, 1997, Vol.2: 599-602.
  • 5Martinez P, Schertzer D, and Pham K K. Texture modelisation by multifractal processes for SAR image segmentation. IEE conference of Radar 97, Edinburgh, UK. 1997: 135-139.
  • 6Gan Du and Tat Soon Yeo. A novel lacunarity estimation method applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2687-2691.
  • 7Felzenszwalb P, McAllester D, and Ramanan D. A discriminatively trained, multiscale, deformable part model [C]. IEEE conference on Computervision and pattern recognition 2008, CVPR 2008, Anchorage, Alaska, 2008: 1-8.
  • 8Meirav Galun, Ronen Basri, and Achi Brandt. Multiscale edge detection and fiber enhancement using differences of oriented means [C]. IEEE llth International Conference on Computer Vision 2007, ICCV 2007, Rio de Janeiro, Brazil, 2007: 1-8.
  • 9Larlus D and Jurie F. Combining appearance models and Markov random fields for category level object segmentation[C]. IEEE conference on Computervision and pattern recognition 2008, CVPR 2008, Anchorage, Alaska, 2008: 1-7.
  • 10Guo Yan-lin, Cen Rao, Samarasekera S, Kim J, and Kumar R. Matching vehicles under large pose transformations using approximate 3D models and piecewise MRF model[C]. IEEE conference on Computervision and pattern recognition 2008, CVPR 2008, Anchorage, Alaska, 2008: 1-8.

二级参考文献21

  • 1Basseville M.,Benveniste A.,Willsky A.S..Multiscale autoregressive processes,part I:Schur-Levinson parametrizations.IEEE Transactions on Signal Processing,1992,40(8):1915~1934.
  • 2Basseville M.,Benveniste A.,Willsky A.S..Multiscale autoregressive processes,part Ⅱ:Lattice structures for whiting and modeling.IEEE Transactions on Signal Processing,1992,40(8):1935~1954.
  • 3Benveniste A.,Nikoukhah R.,Willsky A.S..Multiscale system theory.IEEE Transactions on Circuit and System I:Fundamental Theory and Applications,1994,41(1):1915~1934.
  • 4Fosgate C.H.,Krim H.,Irving W.W.,Karl W.C.,Willsky A.S..Multiscale segmentation and anomaly enhancement of SAR imagery.IEEE Transactions on Image Processing,1997,6(1):7~20.
  • 5Irving W.W.,Novak L.M.,Willsky A.S..A multiresolution approach to discrimination in SAR imagery.IEEE Transactions on Aerospace and Electronic Systems,1997,33(4):1157~1169.
  • 6Kim A.,Kim H..Hierarchical stochastic modeling of SAR imagery for segmentation/compression.IEEE Transactions on Signal Processing,1999,47(2):458~468.
  • 7McLachlan G.,Peel D..Finite Mixture Models.New York:John Wiley & Sons,Ins,2000.
  • 8Lai Z.B.,Guo P.,Wang T.J.,Xu L..Comparison on Bayesian Ying-Yang theory based clustring number selection criterion with information theoretical criteria.In:Proceedings of IEEE World Congress on Computational Intelligence,Alaska,1998,725~729.
  • 9Biernacki C.,Govaert G..Using the classification likelihood to choose the number of clusters.Computing Science and Statistics,1997,29(2):451~457.
  • 10Sanjay Gopal S.,Hebert T.J..Maximum likeliood pixel labeling using a spatially variant finite mixture model.IEEE Transactions on Nuclear Science,1997,44(4):1578~1582.

共引文献17

同被引文献146

引证文献13

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部