期刊文献+

基于样本正交子空间的SAR目标识别方法 被引量:4

SAR Target Recognition Method Based on Orthogonal Subspace of Samples
下载PDF
导出
摘要 利用合成孔径雷达(Synthetic Aperture Radar,SAR)获取的目标像进行识别时,基于子空间的自动目标识别(Automatic Target Recognition,ATR)方法通常是对样本数据的值空间进行操作。当识别相似目标时,由于彼此的值空间存在较大的交集,生成的识别模板的可分性较差。该文提出一种SAR目标ATR方法,该方法将SAR样本数据的正交子空间作为投影空间。因此,不同类目标样本在投影空间的差异性加大,能够明显提高识别效果。实验结果表明,本文方法的识别性能优于其它同类方法。 To identify with the target images obtained by Synthetic Aperture Radar(SAR),those subspace-based methods for Automatic Target Recognition(ATR) are usually based on the range subspace of the samples.When some similar targets need to be distinguished,the corresponding templates are poorly separable because the range subspaces of each other have a big intersection.A method for SAR target ATR is proposed in this paper,which considers the orthogonal complement subspace of the samples as the projection subspaces.Consequently,the difference,between the projections of the different type targets on the projection subspace,is enlarged,which significantly improves the identification performance.Experimental results show that the proposed method is superior to the other similar methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2581-2584,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60736009 60872110) 国家863计划项目(2006AA12Z321)资助课题
关键词 自动目标识别 合成孔径雷达 特征模板 正交子空间 Automatic Target Recognition(ATR) Synthetic Aperture Radar(SAR) Feature template Orthogonal subspace
  • 相关文献

参考文献5

二级参考文献35

  • 1吴艳,沈博,廖桂生.基于多方向小波模糊融合的SAR图像边缘提取[J].西安电子科技大学学报,2006,33(5):691-695. 被引量:5
  • 2Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery [C]//Proc. SPIE, 2005,5808: 314- 325.
  • 3Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C] // IEEE Conf. Signal Processing Society Workshop, New York, 1999 : 41 - 48.
  • 4Guttman O, Meir R. Nonlinear Fisher discriminant using kernels[C]//IEEE Convention of the Electrical and Electronic Engineers. Israel, 2000: 257- 260.
  • 5Liu Q, Huang R, Lu H, et al. Face recognition using kernel based fisher discriminant analysis[C]//IEEE Conf. Automatic Face and Gesture Recognition, Washington D C, 2002: 205 -211.
  • 6He B, Tong L, Han X, et al. SAR image texture classification based on kernel fisher discriminant analysis[C]//IEEE Conf. Geoscience and Remote Sensing Symposium, Denver, 2006: 3127 -3129.
  • 7Comon P. Independent component analysis: A new concept? [J]. Signal Processing, 1994, 36(3) : 287-314.
  • 8Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
  • 9Bell A, Sejnowski T J. Information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
  • 10Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Trans. on Neural Networks, 2002, 13(6) : 1450- 1464.

共引文献97

同被引文献53

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部