期刊文献+

在小样本条件下直接LDA的理论分析 被引量:4

Theoretical Analysis of Direct LDA in Small Sample Size Problem
下载PDF
导出
摘要 直接线性鉴别分析(DLDA)是一种以克服小样本问题而提出的LDA扩展方法,被声明利用了包含类内散布矩阵零空间外的所有信息。然而,很多反例表明事实并非如此。为了更深入地了解DLDA的特性,该文从理论上对其进行了分析,得出结论:基于传统Fisher准则的DLDA几乎没利用零空间,将丢失一些有用的鉴别信息;而基于广义Fisher准则的DLDA,若满足一定条件(在高维小样本数据应用中一般都满足)且最优鉴别矢量正交约束,则其等价于零空间LDA和正交LDA。在人脸数据库ORL和YALE上的比较实验结果亦与理论分析一致。 Direct LDA (DLDA) is an extension of Linear Discriminant Analysis (LDA) to deal with the small sample size problem, which is previously claimed to take advantage of all the information, both within and outside of the within-class scatter's null space. However, a lot of counter-examples show that this is not the case. In order to better understand the characteristics of DLDA, this paper presents its theoretical analysis and concludes that: DLDA based on the traditional Fisher criterion nearly does not make use of the information inside the null space, thus some discriminative information may be lost; while one based on other variants of Fisher criterion is equivalent to null-space LDA and orthogonal LDA under the orthogonal constraints among discriminant vectors and a mild condition which holds in many applications involving high-dimensional data. The comparative results on the face database, ORL and YALE, also consistent with the theory analysis.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2632-2636,共5页 Journal of Electronics & Information Technology
关键词 模式识别 FISHER准则 降维 线性鉴别分析 小样本 Pattern recognition Fisher criterion function Dimensionality reduction Linear Discriminant Analysis(LDA) Small sample size
  • 相关文献

参考文献13

  • 1Krzanowski W J, Jonathan P, and Mccarthy W V, et al.. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics, 1995, 44(11): 101-115.
  • 2Belhumeur P N, Hespanha J P, and Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 3Yu Hua and Yang Jie. A direct LDA algorithm for high- dimensional data-with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070.
  • 4Chen L F, Liao H Y M, and Ko M T, et al.. A new LDA-bascd face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 33(10): 1713-1726.
  • 5Huang R, Liu Q, and Lu H, et al.. Solving the small sample size problem of LDA. Proceedings of International Conference on Pattern Recognition, USA, 2002,3: 29-32.
  • 6Ye Jie-ping. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 2005, 6(Apr.): 483-502.
  • 7Ye Jie-ping and Xiong Tao. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. Journal of Machine Learning Research, 2006, 7(Jul.): 1183-1204.
  • 8Zheng Yujie, Guo Zhibo, and Yang Jian, et al.. DLDA/QR A robust direct LDA algorithm for face recognition and its theoretical foundation. Lecture Notes in Computer Science 2007, 4426: 379-387.
  • 9Park C H and Lee M. On applying linear discriminant analysis for multi-labeled problems. Pattern Recognition Letter, 2008, 29(7): 878-887.
  • 10厉小润,赵光宙,赵辽英.改进的核直接Fisher描述分析与人脸识别[J].浙江大学学报(工学版),2008,42(4):583-589. 被引量:8

二级参考文献11

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2高秀梅,杨静宇,杨健.一种最优的核Fisher鉴别分析与人脸识别[J].系统仿真学报,2004,16(12):2864-2868. 被引量:13
  • 3边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 4BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711 -720.
  • 5HUA Yu, YANG Jie. A direct LDA algorithm forhigh- dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(11): 2067-2070.
  • 6LU Ju-wei, PLATANIOTIS K N, VENETSANOPOU- LOS A N. Regurarization studies of linear discriminant analysis in small sample size scenarios with application to face recognition[J]. Pattern Recognition Letters, 2005, 26(2):181-191.
  • 7JOHN S T,NELLO C. Kernel methods for pattern analysis [M]. Beijing: China Machine Press, 2005.
  • 8MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels [C] // Proceedings of IEEE International Workshop on Neural Networks for Signal Processing. Madison, Wisconsin:IEEE, 1999, 41- 48.
  • 9GAUDAT G, ANOUAR F, Generalized discriminate analysis using a kernel approach [J]. Neural Computation, 2000,12(10) :2385 - 2404.
  • 10YANG Ming-hsuan. Kernel eigenfaces vs. Kernel Fisherfaces: face recognition using kernel methods [C]//Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition (RGR' 02). Washington D. C:IEEE, 2002,215 - 220.

共引文献7

同被引文献47

  • 1杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3陈伏兵,高秀梅,张生亮,杨静宇.基于分块PCA的人脸识别方法[J].小型微型计算机系统,2006,27(10):1943-1947. 被引量:10
  • 4Zhang Xiao-zheng and Gao Yong-sheng. Face recognition across pose: a review [J]. Pattern Recognition, 2009, 42(11): 2876-2896.
  • 5Levine Martin D and Yu Ying-feng. State-of-the-art of 3D facial reconstruction methods for face recognition bmsed oil a single 2D training image per person [J]. Pattern Recognition Letters, 2009, 30(10): 908-913.
  • 6Phillips P J, Flynn P J, and Scruggs T, et al.. Overview of the face recognition grand challenge[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, 2005, 1: 947-954.
  • 7Zhou S K, Aggarwal G, and Chellappa R, et al.. Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition[J]. IEEE Transactions on Pattern Analysis and Machine fntelligence, 2007, 29(2): 230-245.
  • 8Li Stan Z, Chu Ru-feng, and Liao Sheng-cai, et al.. Illumination invariant face recognition using near-infrared images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 627-639.
  • 9Shao Ming and Wang Yun-hong. Joint features for face recognition under variable illuminations [C]. Proceedings of the 5th International Conference on Image and Graphics, Washington, 2010: 922-927.
  • 10Wright J, Yang Allen Y, and Ganesh A. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部