期刊文献+

考虑工艺波动影响的RLC互连统计延时 被引量:1

Statistical RLC Interconnect Delay Considering Process Variations
下载PDF
导出
摘要 该文提出了一种考虑工艺波动的统计RLC互连延时分析方法。文中首先给出了考虑工艺波动的寄生参数和矩的构建方法,然后基于Weibull分布给出了RLC互连的统计延时模型。所提方法同样适用于已有的延时模型如Elmore模型,等效Elmore模型和D2M模型。通过对几种模型的比较,表明,基于Weibull分布的RLC互连的统计延时模型是最精确的,和HSPICE相比,50%延时误差最大0.11%,蒙特卡洛分析中的均值和平均偏差误差最大2.02%。 Analysis of RLC Statistical delay considering process fluctuation is presented in this paper.Construction of parasitic parameters and moments with process variation is first given,and then a statistical delay model based on Weibull distribution is achieved.The proposed method is also applied to the other available delay such as Elmore,equivalent Elmore and D2M.For the statistical delay model based on Weibull distribution,compared with HSPICE,results show that the maximum error of 50% delay is 0.11%,the maximum error of mean and the average in Monte Carlo analysis is 2.02%.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2767-2771,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60606006) 国家杰出青年基金(60725415) 重点实验室基金(9140C030102060C0303)资助课题
关键词 集成电路 工艺波动 RLC互连延时 统计模型 WEIBULL分布 IC Process variations RLC interconnect delay Statistical model Weibull distribution
  • 相关文献

参考文献10

  • 1ITRS. Modeling and simulation (2007). http://www.itrs.net/, 2008, 11.
  • 2Qu H, Kong L, and Xu Y S, et al.. Finite-element computation of sensitivities of interconnect parasitic capacitances to the process variation in VLSI. IEEE Transactions on Magnetics, 2008, 44(6): 1386-1389.
  • 3Ravindra J V R and Srinivas M B. A statistical model for estimating the effect of process variations on delay and slew metrics for VLSI interconnects. Proc IEEE Digital System Design Architectures, Methods and Tools (DSD2007), Lllbeck, Germany, 2007: 325-330.
  • 4Alpert C J, Devgan A, and Kashyap C V. RC delay metric for performance optimization. IEEE Transactions on Computer-Aided Design o] Integrated Circuits and Systems, 2001, 20(5): 571-582.
  • 5Liu F, Kashyap C, and Alpert C J. A delay metric for RC circuits based on the Weibull distribution. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23(3): 443-447.
  • 6Ismail Y I, Friedman E G, and Neves J L. Equivalent Elmore delay for RLC trees. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2000, 19(1): 83-97.
  • 7Dai W and Hao J. Timing analysis taking into account interconnect process variation. IEEE International Workshop on Statistical Methodology, Kyoto, Japan, 2001: 51-53.
  • 8Wong S C, Lee G Y, and Ma D J. Modeling of interconnect capacitance, delay, and crosstalk in VLSI. IEEE Transactions on Semiconductor Manufacturing, 2000, 13(1): 108-111.
  • 9Qi x N, Wang G F, and Yu Z P, et al.. On-chip inductance modeling and RLC extraction of VLSI interconnects for circuit simulation. Proc IEEE Custom Integrated Circuits Conference (CICC 2000), Orlando, Florida, USA, 2000: 487-490.
  • 10ITRS. Interconnect (2007). http://www.itrs.net/, 2008, 11.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部