期刊文献+

光伏光折变晶体中孤立波的数值模拟 被引量:1

NUMERICAL SIMULATIONS OF SOLITARY WAVES IN PHOTOVOLTAIC-PHOTOREFRACTIVE CRYSTAL
原文传递
导出
摘要 高斯光束在光伏光折变晶体中孤立波的演化满足傍轴方程.傍轴方程可以看作无限维Hamiltonian系统并可以利用辛几何算法进行计算.数值结果表明外加电场和光伏场的强弱和入射高斯光束的振辐对形成稳定的孤立波有显著的影响.傍轴方程的辛几何差分格式能很好地模拟傍轴方程中孤立波的演化行为. Solitary evolutions of gauss beams in photovoltaic-photorefractive crystal satisfy the paraxial equation. The paraxial equation was transformed into the symplectic structure of the infinite dimensional Hamiltonian system and the symplectic structure of the paraxial equation was discretizated by the symplectic method. The symplectic difference scheme of the paraxial equation was obtained. Numerical results showed the intensity of the applied field and the amplitude of the gauss beams have remarkable infulence on forming the steady solitary waves. The symplectic difference scheme can well simulate the solitary evolution behaviors of the paraxial equation.
出处 《计算数学》 CSCD 北大核心 2009年第4期419-424,共6页 Mathematica Numerica Sinica
基金 国家自然科学基金(10401033)资助项目
关键词 光伏光折变晶体 傍轴方程 辛几何算法 高斯光束 Photovoltaic-photorefractive crystal Paraxial equation Symplectic method Gauss beam
  • 相关文献

参考文献9

  • 1Gunter P, Huignard J P, eds. Photorefractive Materials and Their Applications and II (Springer- Verlag, Berlin, 1988); P.Yeh.Introduction to Photorefracive Nonlinear Optics, Wiley, New York, (1993).
  • 2Hasegawa A and Tappert F. Appl. Phys. Lett., 1973, 23: 142.
  • 3Ablowitz M J and Segur H. Solitons and the Inverse Scattering Transform (SIAM, Philadelphia), (1981).
  • 4Sophocleous C and Parker D F. Opt. Commun., 1994, 112: 214.
  • 5Feng K and Qin M Z. Hamiltonian algorithm and a comparative numerical study[J] Computer Physics Communication, 1991, 65: 173-187.
  • 6Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. J. Comp. Math, 1986, 4(3): 279-289.
  • 7Sun Jian-Qiang, Gu Xiao-Yan, Ma Zhong-Qi. Numerical study of the soliton waves of the coupled nonlinear Schrodinger system. Physica D, 2004, 196, 311-328.
  • 8刘劲松,卢克清.加外电场的光伏光折变晶体中的空间孤子波[J].物理学报,1998,47(9):1509-1514. 被引量:94
  • 9张都应,刘劲松,梁昌洪.高斯光束在光伏光折变晶体中的孤波演化[J].光学学报,2001,21(6):647-651. 被引量:19

二级参考文献3

共引文献101

同被引文献15

  • 1曾文平,孔令华,单双荣.SRLW方程的多辛中点格式[J].厦门大学学报(自然科学版),2006,45(2):168-170. 被引量:1
  • 2Qin M Z. Symplectic differernce schemes for nonautonomous Hamiltonian systems[J]. Acta Math.Applicatae Sinica, 1996, 12(3): 309-321.
  • 3Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. J. Phys. A: Math. Gen., 2006, 39: 5287-5320.
  • 4Moore B, Reich S. Backward error analysis for multi-symplectic integration methods[J]. Numerische Mathematik, 2003, 95: 625-652.
  • 5Sun J Q, Qin M Z. Multi-symplectic methods for the coupled 1D nonlinear Schr5dinger system[J]. Comp. Phys. Comm., 2003, 155: 221-235.
  • 6Bridges T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letters A, 2001, 284: 184-193.
  • 7Hong J L, Liu H Y, Sun G. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs[J]. Math. Comp. 2006, 752(53): 167-181.
  • 8Kong L H, Hong J L, Zhang J J. Splitting multisymplectic integrators for Maxwell's equations[J]. J. Comp. Physics., 2010, 229: 4259-4278.
  • 9Shun W Y, Tai L S. New schemes for the coupled nonlinear Schrodinger equation[J]. J. Computer. Mathematics, 2010, 87(4): 775-787.
  • 10Yoshida H. Construction of higher order symplectic integrators[J]. Physics Letters A, 1990, 150(5,6,7): 262-268.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部