期刊文献+

某些乘积图上接触过程的中间状态的存在性

The Existence of an Intermediate Phase for the Contact Process on Some Product Graphs
原文传递
导出
摘要 本文讨论了乘积图T_d×G上的接触过程(其中T_d为每个顶点度数均为d≥3的规则树,G为任何有限连通简单图),证明了该过程存在弱存活的中间状态. In this article the author considers the contact process on the product graph of a homogeneous tree with degree d≥3 and an arbitrary finite connected simple graph, showing that an intermediate phase for weak survival exists.
作者 姚强
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第6期1055-1066,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金杰出青年项目(10625101) 国家自然科学基金重点项目(10531070) 国家重点基础研究发展计划(2006CB805900)
关键词 乘积图 接触过程 临界值 product graphs contact process critical value
  • 相关文献

参考文献12

  • 1Stacey A. M., The existence of an intermediate phase for the contact process on trees, Annals of Probability, 1996, 24:1711- 1726.
  • 2Harris T. E., Contact interactions on a lattice, Annals of Probability, 1974, 2:969-988.
  • 3Liggett T. M., Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Berlin: Springer, 1999.
  • 4Liggett T. M., Interacting Particle Systems, New York: Springer-Verlag, 1985.
  • 5Bezuidenhout C., Grimmett G. R., The critical contact process dies out, Annals of Probability, 1990, 18: 1462-1482.
  • 6Pemantle R., The contact process on trees, Annals of Probability, 1992, 20: 2089-2116.
  • 7Liggett T. M., Multiple transition points for the contact process on the binary tree, Annals of Probability, 1996, 24:1675-1710.
  • 8Pemantle R., Stacey A. M., The branching random walk and contact process on Galton Watson and nonhomogeneous trees, Annals of Probability, 2001, 29: 1563-1590.
  • 9Madras N., Schinazi R., Branching random walks on trees, Stochastic Processes and Their Applications, 1992, 42: 255-267.
  • 10Durrett R., Probability: Theory and Examples, Third Edition, Brooks Cole, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部