期刊文献+

吴消元法在求解潮流方程中的应用 被引量:2

Application of Wu Elimination Method in Solving Power-Flow Equations
下载PDF
导出
摘要 应用吴消元法求解潮流方程的全部解,做到不增不漏。该方法不仅得到了常规的两组运行解,即高压解、低压解,在低负荷时还得到了另外两组运行解。在计算的基础上,绘制了其他方法不易得到的V-P曲线和VPQ三维曲面,并获得了系统稳定运行域。本文应用V-Q灵敏度分析的方法分析不同运行方式的稳定性,同时分析了潮流雅可比矩阵的性质。 Wu elimination method is applied to solve the analytical solutions of power flow equations without extraneous roots or missing roots. By Wu elimination method, two other groups of solutions are obtained under low-load conditions, despite the normal groups of high-voltage and low-voltage solutions. On basis of computation, V-P curve, and VPQ three-dimensional surface are obtained, as well as the stable operational area. V-Q sensitivity analysis method is used to analyze the stability under different operational conditions. The properties of Jacobian matrix are also analyzed in this paper.
出处 《电工技术学报》 EI CSCD 北大核心 2009年第10期128-133,共6页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(69774003)
关键词 吴消元法 潮流方程 V-P曲线 V-Q灵敏度分析 潮流雅可比矩阵 Wu elimination method, power flow equations, V-P curve, V-Q sensitivity analysis, Power flow Jacobian matrix
  • 相关文献

参考文献14

  • 1关霭雯.吴文俊消元法讲义[M].北京:北京理工大学出版社,1994.
  • 2陈陈,赵学强,曹国云.机械化数学——吴消元法在电力系统中的应用初探[J].中国电机工程学报,1998,18(1):51-56. 被引量:6
  • 3陈陈,曹维.吴方法在电力系统突然短路电磁暂态过程中的应用[J].中国电机工程学报,2002,22(11):16-19. 被引量:12
  • 4Tinney W F, Hart C E. Power flow solution by Newton's method[J]. IEEE Trans. on Power Apparatus and System, 1967, 86(11): 1449-1460.
  • 5Scott B, Alsac O. Fast decoupled load flow[J]. IEEE Trans. on Power Apparatus and System, 1974, PAS- 93(3): 859-869.
  • 6Korsak A J. On the question of uniqueness of stable load-flow solutions[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(3): 1093-1100.
  • 7Iba K, Suzuki H, Egawa M, et al. A method for finding a pair of multiple load flow solutions in bulk power systems[J]. IEEE Transactions on Power systems, 1990, 5(2): 582-591.
  • 8Salam F M A, et al. Parallel processing for the load flow of power systems: the approach and applications[C]. Proc. Conf. Decision and Control, Tampa,1989.
  • 9Guo X G, Salam F M A. The number of (equilibrium) steady-state solutions of models of power systems[J]. IEEE Transactions on Circuit and Systems, 1994,41(9): 584-600.
  • 10Ma W, Thorp J S, Solving for all the solutions of power systems [J]. Proc. 1992 ISCAS, San Diego, CA.1992,5:2537-2540.

二级参考文献27

共引文献20

同被引文献22

  • 1王维莉,陈陈.吴消元法在精确求解电力系统潮流方程中的应用[J].上海交通大学学报,2004,38(8):1260-1264. 被引量:6
  • 2李劲波,郭银华.一种大系统多值潮流求解方法[J].武汉水利电力大学学报,1994,27(3):257-262. 被引量:1
  • 3杨宁,冯治鸿,周双喜.大电力系统中潮流多解的求取及其应用研究[J].电网技术,1996,20(5):19-21. 被引量:5
  • 4程浩忠.电力系统潮流多根算法及其初值研究[J].电网技术,1996,20(6):25-27. 被引量:9
  • 5AJJARAPU V, CHRISTY C. The continuation power flow: a tool for steady state voltage stability analysis[J]. IEEE Trans on Power Systems, 1992, 7(1): 416-423.
  • 6CHIANG H D, FLUECK A J, SHAH K S, et al. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations[J]. IEEE Trans on Power Systems, 1995, 10(2): 623-634.
  • 7GUO S X, SALAM F M A. The number of (equilibrium) steady- state solutions of models of power systems[J]. IEEE Trans on Circuits and Systems I : Fundamental Theory and Applications, 1994, 41(9): 584-600.
  • 8NING J, GAO W, RADMAN G, et al. The application of the Groebner Basis technique in power flow study[C]// Proceedings of the North American Power Symposium, October 4-6, 2009, Starkville, MS, USA: 7p.
  • 9KAVASSERI RG, NAG P. An algebraic geometric approach to analyze static voltage collapse in a simple power system model [C]//15th National Power Systems Conference, December 16- 18, 2008, Mumbai, India.
  • 10COX D A, LITTLE J B, O'SHEA D. Using algebraic geometry [M]. 2nd ed. Germany: Springer, 2005.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部