摘要
An a posteriori error estimator is obtained for a nonconforming finite element approximation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error estimator are rigorously proved and are verified by numerical examples.
An a posteriori error estimator is obtained for a nonconforming finite element approximation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error estimator are rigorously proved and are verified by numerical examples.
基金
supported by the Special Funds for Major State Basic Research Projects(2005CB321701)
NSFC(10431050, 10571006 and 10528102)
RFDP of China