期刊文献+

三角形回路弦网络系统控制器设计及指数稳定

Design of Controllers and Exponential Stability of a Triangle Loop Strings Network System
下载PDF
导出
摘要 研究了一个由3根等长质量均匀的弹性弦构成三角形连接的网络系统,它在一个顶点p1处张力连续而位移不连续,在其他2个顶点位移连续而张力不连续.通过在网络结点处设计控制器形成一个闭环系统.利用半群理论证明了这个闭环系统的适定性.通过算子谱分析,证明了系统的谱由孤立的有限重本征值构成,并且当连接p1的2根弦波速之比不等于它们的质量密度之比的倒数时,系统的谱分布在左半复平面平行于虚轴的一个带域内.并证明了系统算子的广义本征向量构成状态空间的Riesz基,从而系统满足谱确定增长条件.于是闭环系统至少是渐近稳定的,并且当任意2根弦的波速之比均为有理数时,系统可达到指数稳定. A triangle loop strings network system is conceived,which consists of three elastic strings with the same length and uniform quality density. Its displacement is discontinuous and the tensile force is continuous on a vertex, P1 ,and on the other two vertexes ,the displacement is continuous and the tensile force is discontinuous. A closed loop system is established by the controllers placed on the three nodes. Then its well-posedness is proved by the semi-group theory. From the spectral analysis,it is shown that the spectrum of the system is composed of isolated finite multiplicity eigenvalues and is located in a strip parallel to the imaginary axis in the left half complex plane if the ratio of the velocities of wave propagation of the two strings connected on P1 is not the reciprocal of the density ratio of the two strings. Hence,the generalized eigenvectors of the system operator form the Riesz basis of the state space and the spectrum-determined growth condition holds. So the system is at least asymptotically stable ,and can attain the exponential stability if all ratios of the velocities of wave propagation of any two strings are rational.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2009年第11期980-986,共7页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60874034) 国家自然科学青年基金资助项目(60704015) 南开大学与天津大学刘徽应用数学研究中心资助项目
关键词 弦网络系统 闭环控制系统 控制器 谱分析 RIESZ基 指数稳定性 strings network system closed loop control system controller spectral analysis Riesz basis exponential stability
  • 相关文献

参考文献13

  • 1Dager R, Zuazua E. Wave Propagation ,Observation and Control in 1-D Flexible Multi-Struetures[M]. USA: Springer Verlag,Mathematiques & Applications,2006.
  • 2Chen G,Coleman M, West H H. Pointwise stabilization in the middle of the span for second order systems, nonuniform and uniform exponential decay of solutions [J]. SIAMJAppl Math, 1987,47 (4) :751-780.
  • 3Liu K S ,Huang F L ,Chen G. Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage [J]. SIAM J Appl Math, 1989,49 (6) : 1694-1707.
  • 4Ammari K, Jellouli M. Stabilization of star-shaped tree of elastic strings[J]. Differential and Integral Equations, 2004,17:1395-1410.
  • 5Ammari K,Jellouli M, Khenissi M. Stabilization of generic trees of strings [J]. JDynamical Control Systems, 2005,11 (2) :177-193.
  • 6Xu G Q,Liu D Y, Liu Y Q. Abstract second order hyperbolic system and applications to controlled network of strings [J]. SlAM J Control and Optimization ,2008, 47 (4) : 1762-1784.
  • 7Xu G Q, Guo B Z. Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation[J]. SIAM J Control and Optimization, 2003,42 (3) :966-984.
  • 8Guo B Z, Xie Y. A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks[ J]. SlAM J Control and Optimization, 2004,43 (4) : 1234-1252.
  • 9Guo Y N,Xu G Q,Yang L L. Riesz basis property for generic network of strings [C] //Proceedings of the 26th Chinese Control Conference. Zhangjiajie, China, 2007 : 656-659.
  • 10刘东毅,尚英锋,许跟起.串联弦系统的控制器和补偿器的设计及其Riesz基[J].控制理论与应用,2008,25(5):815-818. 被引量:1

二级参考文献9

  • 1CHEN G, COLEMAN M, WEST H H. Pointwise stabilization in the middle of the span for second order systems, nonniform and uniform exponential decay of solutions[J]. SlAM Journal on Applied Mathematics, 1987, 47(4): 751 - 780.
  • 2LIU K S, HUANG F L, CHEN G. Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage[J]. SIAM Journal on Applied Mathematics, 1989, 49(6): 1694 - 1707.
  • 3COX S, ZUAZUA E. The rate at which energy decays in a Damped string[J]. Communications in Partial Differential Eqnarrays, 1994, 19(1): 213 - 244.
  • 4DAGER R. Observation and control of vibrations in tree-shaped networks of strings[J]. SIAM Journal of Control Optimization, 2004, 43(2): 590-623.
  • 5LEUGERING G. Dynamic domain decomposition of optimal control problems for networks of strings and timoshenko beams[J]. SIAM Journal of Control Optimization, 1999, 37(6): 1649 - 1675.
  • 6GUO B Z, XIE Y. A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks[J]. SIAM Journal of Control Optimization, 2004, 43(4): 1234 - 1252,
  • 7XU G Q, GUO B Z. Riesz basis property of evolution eqnarrays in Hilbert spaces and application to a coupled string eqnarray[J]. SlAM Journal of Control Optimization, 2003, 42(3): 966 - 984.
  • 8LYUBICH Y I, PHONG V Q. Asymptotic stability of linear differential eqnarrays in Banach spaces[J]. Studia Mathematics, 1988, 88:37 - 42.
  • 9XU G Q, HAN Z J, YUNG S E Riesz basis property of serially connected Timoshenko beams[J]. International Journal of Contlol, 2007, 80(3): 470 - 485.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部