期刊文献+

狂犬病病毒糖蛋白在酿酒酵母中的表达 被引量:1

Expression of Rabies Virus Glycoprotein Gene in Saccharomyces cerevisiae
原文传递
导出
摘要 利用酿酒酵母表达系统表达狂犬病病毒糖蛋白G,可获得大量无致病的抗原,为研究新型狂犬病疫苗提供条件。构建Tat-G融合基因,通过EcoR I和Xba I酶切位点克隆至pYes2表达载体中,醋酸锂法转化酿酒酵母,URA3筛选鉴定阳性克隆,阳性重组子经半乳糖诱导20 h后,提取蛋白,SDS-PAGE和Western blot分析鉴定融合蛋白。SDS-PAGE结果显示糖蛋白基因在酿酒酵母中可能表达为2种形式的蛋白,yGI和yGII,分子大小分别为66 kD和56 kD,Western blot显示在56 kD处有特异性条带。结合前人的研究成果,初步判断狂犬病病毒糖蛋白基因的跨膜TD区和膜内编码区对RV-G蛋白分子的正确折叠和免疫活性等有至关重要的影响,从而为进一步提高yGII蛋白的表达奠定基础。 To obtain non-pathogenic rabies virus glycoprotein (RV-G), we expressed RV-G in Saccaromyces Cerevisiae (S. cerevisiae). In our study, tat-G fusion gene was cloned into the expression vector pYes2.0, which allows expression of a foreign gene in the yeast cells under the control of GAll promoter. Transformation was performed by using lithium-treated yeast cells and several Ura+ -tranformants were isolated. According to the relative mobility in SDS-PAGE, we know probably two forms (designated as yGI and yG II ) of RV-G analogues produced in S. cerevisiae, their molecular weights were estimated as 66 kD and 56 kD, respectively. On the other hand, there was a specific band about 56 kD shown in western blot result. Combining precursors' achievements, we will draw a conclusion that trans-membrane domain (TD) and cytoplasmic domain have a negative regulation on RV-G antigen immunogenicity in S. cerevisiae.
出处 《微生物学通报》 CAS CSCD 北大核心 2009年第11期1705-1709,共5页 Microbiology China
关键词 狂犬病病毒糖蛋白 Tat肽 酿酒酵母 Rabies virus glycoprotein, Tat peptide, Saccharomyces Cerevisae
  • 相关文献

参考文献9

  • 1Manning SE, Rupprecht CE, Fishbein D, et al. Human ra- bies prevention --- United States, 2008. MMWR Recomm Rep, 2008, 57(RR-3): 1-28.
  • 2Yokomizo AY, Jorge SAC, Astray RM, et al. Rabies virus glycoprotein expression in drosophila $2 cells. Functional recombinant protein in stable co-transfected cell line. Biotechnology Journal, 2007, 2( 1 ): 102-109.
  • 3Li J, Faber M, Papaneri A, et al. A single immunization with a recombinant canine adenovirus expressing the ra- bies virus G protein confers protective immunity against rabies in mice. Virology, 2006, 356(1-2): 147-154.
  • 4Saxena S, Sonwane AA, Dahiya SS, et al. Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies vi- rus glycoprotein. Veterinary Microbiology, 2009, 136(1-2) 36-44.
  • 5Nielsen J, Jewett MC. Impact of systems biology on metabolic engineering of Saccharomyces Cerevisiae. FEMS Yeast Research, 2008, 8( 1 ): 122-131.
  • 6Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Advanced Drug Delivery Reviews, 2008, 60(4-5): 548-558.
  • 7Rath A, Choudhury S, Batra D, et al. DNA vaccine for rabies: Relevance of the trans-membrane domain of the glycoprotein in generating an antibody response. Virus Research, 2005, 113(2): 143-152.
  • 8Ashraf S, Singh PK, Yadav DSK, et al. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology, 2005, 119(1): 1-14.
  • 9Sakamoto S, Ide T, Tokiyoshi S, et al. Studies on the structures and antigenic properties of rabies virus glycoprotein analogues produced in yeast cells. Vaccine, 1999, 17(3): 205-218.

同被引文献20

  • 1孙敬方.动物实验方法学[M].北京:人民卫生出版社,2002.483-494.
  • 2Kim S H, Lee K Y, Jang Y S. cell-targeting strategies for oral Netw, 2012, 12(5) :165-175.
  • 3Mucosal immune system and M mucosal vaccination. Immune Mutsch M, Zhou W, Phodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell' s palsy in Switzerland. N Engl J Med, 2004, 350(9) :896-903.
  • 4Czerkinsky C, Holmgren J. Enteric vaccines for the developing world: a challenge for mucosal mmunology. Mucosal Immunol, 2009, 2(4) : 284- 287.
  • 5Mestecky J, Nguyen H, Czerkinsky C, et al. Oral immunization: an update. Curr Opin Gastroenterol, 2008,24(6) : 713-719.
  • 6Azizi A, Kumar A, Diaz-Mitoma F, et al. Enhancing oral vaccine potency by targeting intestinal M ceils. PloS Pathog, 2010, 6 (11) : e1001147-7.
  • 7Katz D E, DeLorimier A J, Wolf M K, et al. Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine, 2003, 21 (5- 6) : 341-346.
  • 8Frey A, Giannasca K T, Weltzin R, et al. Role of the glycocalyx in regulating access of micropartieles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med, 1996, 184 (3) : 1045- 1059.
  • 9Tacket C O. Plant-based oral vaccines: results of human trials. Curr Top Mireobiol Immunol, 2009, 332 : 103-117.
  • 10Pniewski T, Kapusta J, Bociag P, et al. Plant expression, lyophilisation and storage of HBV medium and large surface antigens for a prototype oral vaccine formulation. Plant Cell Rep, 2012, 31(3) : 585-595.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部