期刊文献+

基于自适应进化粒子群算法的多目标优化方法 被引量:9

Adaptive Evolutionary Particle Swarm Algorithm for Multi-Objective Optimisation
下载PDF
导出
摘要 提出一种自适应进化粒子群优化算法(AEPSO),以提高多目标优化PSO算法的性能。AEPSO算法把非支配排序技术、自适应惯性权重和特殊的变异操作引入到PSO算法中,来提高算法的全局搜索能力和粒子的多样性。与常用的整体加权方法来处理多目标优化问题不同,AEPSO算法采用非劣解排序来引导粒子的飞行,以改进算法的收敛性,同时采用特殊的变异操作防止早熟收敛并增加优化解的多样性。所提算法的有效性经过四种代表性benchmark函数进行验证,并与几种典型同类型算法进行比较。该算法已成功地用于合金材料的多目标优化设计。实验结果表明AEPSO算法能够较好地兼顾收敛精度与优化解的多样性,满足多目标优化设计的要求。 An Adaptive Evolutionary Particle Swarm Optimisation (AEPSO) approach was proposed to improve the performance of PSO algorithm for multi-objective optimisation. The proposed approach incorporated non-dominated sorting, adaptive inertia weight and a special mutation operation into particle swarm optimisation to enhance the exploratory capability of the algorithm and improve the diversity of the Pareto solutions. Instead of using weighted aggregation approach to deal with multi-objective optimisation problems, dominance-based rank was used to guide the flight of particles. The proposed algorithm was validated using several well-known benchmark test functions and successfully applied to the multi-objective optimal design of alloy steels, which aimed at determining the optimal process parameters and the required weight percentages of the chemical composites in order to obtain the pre-defined mechanical properties of the materials. The experimental results have shown that the algorithm can locate the constrained optimal design with good accuracy while keep the diversity of the Pareto solutions.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第22期7061-7065,共5页 Journal of System Simulation
基金 国家111引智工程(B08036)
关键词 多目标优化 群体智能 非支配排序 合金材料优化设计 multi-objective optimisation swarm intelligence pareto-optimality optimal alloy design
  • 相关文献

参考文献22

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization [C]//Proe. IEEE int. Conf. on Neural Networks, Perth, Australia, 1995. USA: IEEE, 1995: 1942-1948.
  • 2KENNEDY J. The Particle Swarm: Social Adaptation of Knowledge [C]//Proc. 1997 Int. Conf. Evolutionary Computation, Indianapolis, IN, USA. Piscataway, USA: IEEE, 1997: 303-308.
  • 3SHI Y, EBERHART R. Fuzzy Adaptive Particle Swarm Optimization [C]// Congress on Evolutionary Computation. Piscataway, USA: IEEE, 2001: 101-106.
  • 4VAN DEN BERGH F, ENGELBRECHT AP. Cooperative Learning in Neural Networks Using Particle Swarm Optimizers [J]. South African Comput. J (S1015-7999), 2000, 11: 84-90.
  • 5GHOSHAL SP. Optimizations of PID Gains by Particle Swarm Optimizations in Fuzzy Based Automatic Generation Control [J]. Electric Power Systems Research (S0378-7796), 2004, 72(3): 203-212.
  • 6ABIDO MA. Optimal Power Flow Using Particle Swarm Optimization [J]. Electrical Power & Energy Systems (S0142-0615), 2002, 24(7): 563-571.
  • 7COELLO CA, PULIDO GT, LECHUGA MS. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transaction Evolutionary Computation (S1089-778X), 2004, 8(3): 256-279.
  • 8SHI YH, EBERHART R. A Modified Particle Swarm Optimize [C]// Proc IEEE World Congress on Computation Intelligence, Piscataway, NJ, USA, 1998. USA, IEEE, 1998: 69-73.
  • 9SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [C]// Proceedings of the 1999 congress on Evolutionary Computation. Piscataway, USA: IEEE, 1999: 1945-1950.
  • 10ZHANG LH, HU S. A New Approach to Improve Particle Swarm Optimization [C]// Lecture Notes in Computer Science, Chicago 2003, USA. Berlin, Germany: Springer-Verlag, 2003: 134-139.

同被引文献84

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部