期刊文献+

基于粒子群的状态反馈控制特征向量的配置 被引量:1

Eigenvector Assignment Based on Particle Swarm Optimization in State Feedback Control
下载PDF
导出
摘要 状态反馈控制特征结构的配置分为特征值的配置和特征向量的配置,在特征值已经确定的情况下,特征向量矩阵的条件数对于系统鲁棒稳定性有着直接的影响。因此以减小特征向量矩阵的条件数为直接目的对特征向量进行配置,是提高系统鲁棒稳定性的最直接的办法。由于在状态反馈控制中特征向量的配置存在自由度,因此以特征向量矩阵的条件数为适应度函数,采用粒子群算法进行优化。同时针对粒子群算法中存在的后期收敛速度慢,搜索精度不高,并可能陷入局部极值的缺陷,对粒子浓度进行调节以保持粒子的多样性,防止算法陷入局部极值。同时建立优秀粒子记忆库,克服粒子群算法后期收敛速度慢的缺点。最后通过实例将改进后的粒子群算法与其它算法进行了比较,验证了本算法对于减小特征向量矩阵的条件数和提高系统鲁棒稳定性的优越性。 Eigenstructure assignment of state feedback control is divided into two parts: eigenvalue assignment and eigenvector assignment. When the eigenvalue is determined, the condition number of eigenvector matrix has the directly effect on the robust stability of the system. In order to improve the robust stability of the system, the most direct way is deducing the condition number of eigenvector matrix. Because of the freedom of eigenvector assignment, the particle swarm arithmetic has been used to deduce the condition number. But this method has a slow search speed at the last period, and it may converge to local optima easily. In order to avoid these disadvantages, density regulation mechanism has been used to maintain the diversity of particles and the excellent particle database has been established to accelerate the search speed. It is proved by experiments that the improved particle swarm arithmetic has great superiority to deduce the condition number of eigenvector matrix and to improve the robust stability of the system.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第22期7113-7117,共5页 Journal of System Simulation
基金 先进数控技术江苏省高校重点建设实验室开放基金项目(KXJ07127)
关键词 特征向量配置 粒子群 条件数 鲁棒稳定性 状态反馈控制 eigenvector assignment particle swarm condition number robust stability state feedback control
  • 相关文献

参考文献9

  • 1Petkov P, Christov N, Konstantinov M, Computational algorithm for pole assignment of linear munltiinput systems [J]. IEEE Transactions on Automatic Control (S0018-9286), November 1986, 31(11): 1044-1047.
  • 2Kautslcy J, Nichols N K, Van Dooren P. Robust pole assignment in linear state feedback [J]. International J of Control, 1985, 41(5): 1129-1155.
  • 3Tusi C C. A new algorithm for the design of multi-functional observers [J]. IEEE Transactions on Automatic Control (S0018-9286), January 1985, 30(1): 89-93.
  • 4Duan G R. Solution to matrix equation AV+VF=BM and their application to eigenstructure assignment in linear systems [J]. IEEE Transactions on Automatic Control (S0018-9286), Feb 1993, 38(2): 276-280.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE Int Conf on Neural Networks, Perth Australia, 1995. USA: IEEE, 1995, 4: 1942-1948.
  • 6黄琳.系统与控制理论中的线性代数[M].北京:国防工业出版社,1986.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space [J]. IEEE Transaction on Evolutionary Computer (S 1089-778X), 2002, 6( 1 ): 58-73.
  • 8罗文坚,曹先彬,王煦法.关于一种免疫遗传算法的性能分析[J].系统仿真学报,2006,18(4):873-876. 被引量:9
  • 9左兴权,李士勇,黄金杰.一种新的免疫进化算法及其性能分析[J].系统仿真学报,2003,15(11):1607-1609. 被引量:29

二级参考文献12

  • 1Srinivas M, Pamaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656-667.
  • 2Jiao L C, Wang L. A Novel Genetic Algorithm Based on Immunity[J]. IEEE Transactions on System, Man, and Cyberaetics Part A: Systems and Humans, 2000, 30(5) : 552-561,.
  • 3De Castro L N, Von Zuben F J, Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3) : 239-251.
  • 4Ada G L, Nossal G. The. Clonal Selection Theory[J]. ScientificAmerican, 1987, 257(2): 50-57.
  • 5G Rudolph.Convergence analysis of canonical genetic algorithms[J].IEEE Trans.on Neural Networks (S1045-9227).1994,5(1):96-101.
  • 6Wenjian Luo,Xianbin Cao.Xufa Wang.An immune genetic algorithm based on immune regulation[C]//In the proceedings of the 2002 Congress on Evolutionary Computation,Honolulu,Hawaii,2002,801-806.
  • 7L A Segel,A S.Perelson.Computations in shape space:a new approach to immune network theory.Theoretical Immunology,Editor,[M].A.S.Perelson,Addison-Wesley,1988.
  • 8曹先彬,刘克胜,王煦法.基于免疫进化规划的多层前馈网络设计[J].软件学报,1999,10(11):1180-1184. 被引量:18
  • 9丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59. 被引量:98
  • 10林丹,李敏强,寇纪凇.基于实数编码的遗传算法的收敛性研究[J].计算机研究与发展,2000,37(11):1321-1327. 被引量:59

共引文献36

同被引文献12

  • 1张凯,彭力,熊健,陈坚.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报,2006,26(10):56-62. 被引量:55
  • 2PETKOV P, CHRISTOV N, KONSTANTINOV M. Computational Algorithm for Pole Assignment of Linear Munltiinput Systems [J]. IEEE Transactions on Automatic Control (S0018-9286), 1986, 31(11) : 1044-1047.
  • 3KAUTSKY J, NICHOLS N K, Van DOOREN P. Robust Pole Assignment in Linear State Feedback [J] .International Journal of Control, 1985, 41 (5) : 1129-1155.
  • 4TUSI C C. A New Algorithm for the Design of Multi- Functional Observers [J]. IEEE Transactions on Automatic Control (S0018-9286), 1985, 30(1) : 89-93.
  • 5DUAN G R. Solution to Matrix Equation AV+VF=BM and Their Application to Eigenstructure Assignment in Linear Systems [J]. IEEE Transactions on Automatic Control (S0018-9286), 1993, 38(2) : 276-280.
  • 6MACIAN V, LUJAN J M, GUARDIOLA C, et al. DFT- Based Controller for Fuel Injection Unevenness Correction in Turbocharged Diesel Engines [J]. IEEE Transactions on Control System Technology, 2006, 14 (5) : 819-827.
  • 7KAUTSKY J, NICHOLS N K, Van DOOREN P. Robust Pole Assignment in Linear State Feedback [J]. International J ofControl, 1985(41): 1129-1155.
  • 8施国标,于蕾艳,林逸.线控转向系统的全状态反馈控制策略[J].农业机械学报,2008,39(2):30-32. 被引量:4
  • 9朱建栋.带传输滞后的线性离散系统的状态反馈镇定[J].控制与决策,2008,23(6):651-654. 被引量:2
  • 10金耀,于德介,殷智宏.主动悬架的一种基于状态反馈的单神经元多变量控制策略[J].振动与冲击,2008,27(8):12-15. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部