期刊文献+

rhTNF-α对成骨向分化前后的人脂肪基质细胞分泌血管生成相关生长因子的影响 被引量:3

Effects of rhTNF-α on the secretion of angiogenesis-related growth factors of human adipose tissue-derived stromal cells before and after osteogenic differentiation
下载PDF
导出
摘要 目的:研究在重组人肿瘤坏死因子(recombinant human tumor necrosis factor alpha,rhTNF-α)刺激下人脂肪基质细胞(human adipose tissue-derived stromal cells,hADSCs)增殖的改变及成骨向分化前后血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子2(fibroblast growth factor-2,FGF-2)和胰岛素样生长因子1(insulin-like growth factor-1,IGF-1)分泌的变化。方法:采用吸脂术获得的第4代hADSCs,以终浓度为0、1、5、10、50、100μg/L的rhTNF-α刺激hADSCs,分别在48、72、96 h后行MTT法检测不同浓度rhTNF-α对hADSCs增殖的影响;并以该浓度梯度的rhTNF-α刺激hADSCs,24 h后收集上清,以ELISA法检测VEGF、FGF-2和IGF-1的分泌情况;在成骨向诱导的第1、3、7、14天收集细胞上清,ELISA法检测上述3种生长因子分泌的变化,收集细胞上清前24 h更换培养基,并在相应孔中加入rhTNF-α,使其终浓度为10μg/L。所有ELISA数据均以相应培养孔的细胞数进行校正。结果:rhTNF-α能促进hADSCs的增殖,其作用表现为一定的浓度和时间依赖。相比于对照组,48 h时,10μg/LrhTNF-α对增殖的促进作用并不明显,但96 h时则表现为促进作用(P<0.01),而100μg/L rhTNF-α在48 h表现为抑制作用(P<0.01),96 h时则表现为明显的促进作用(P<0.01)。相对于对照组,rhTNF-α可以显著促进hADSCs分泌VEGF、FGF-2和IGF-1(P<0.01);hADSCs经成骨向诱导后,上述3种生长因子的分泌有增加的趋势;不同成骨向分化阶段的hADSCs用10μg/L rhTNF-α刺激后,在诱导第1天,rhTNF-α显著促进VEGF的分泌(P<0.01),但对FGF-2和IGF-1的分泌无显著性影响;在诱导第3天和第7天,rhTNF-α对VEGF(P<0.01)、FGF-2(P<0.05)和IGF-1(P<0.05)的分泌均有促进作用;但在第14天则抑制VEGF(P<0.01)、FGF-2(P<0.05)和IGF(P<0.05)的分泌。结论:一定浓度的rhTNF-α对hADSCs的增殖有促进作用;hADSCs分泌VEGF、FGF-2和IGF-1具有rhTNF-α的浓度依赖;在不同成骨向分化阶段,rhTNF-α对hADSCs分泌VEGF、FGF-2和IGF-1这3种生长因子的作用不同。 Objective: To investigate the proliferation and the secretion of vascular endothelial growth factor( VEGF), fibroblast growth factor-2 (FGF-2) and insulin-like growth factor-1 (IGF-1) of human adipose tissue-derived stromal cells (hADSCs)before and after osteogenic differentiation under the stimuli of recombinant human tumor necrosis factor alpha (rhTNF-α). Methods: hADSCs were obtained from human ]ipoaspirates. All the cells used were at passage four. The proliferation of hADSCs was measured with MTF assays 48, 72, 96 hours after being treated with 0, 1, 5, 10, 50 or 100 μg/L rhTNF-α respectively. The secretion of VEGF, FGF-2 and IGF-1 of the undifferentiated hADSCs under stimuli of rhTNF-α with the above 5 concentration grades was observed and the secretion of these 3 growth factors of hADSCs at different stages of osteogenic differentiation under stimuli of 10 μg/L rhTNF-α was also observed. All the supernatants were harvested for measuring after 24 hours' incubation with rhTNF-α. The secretion of VEGF, FGF-2 and IGF-1 was measured with ELISA, and the values were normalized to the cell number of the corresponding wells. Results: The effect of rhTNF-α on the proliferation of hADSCs varied with the concentration and time. Compared with the control(0 μg/L), 10μg/L rhTNF-α showed no suppression or acceleration on proliferation of hADSCs at hour 48, but significantly promoted the proliferation at hour 96 (0. 903 ±0. 042 vs 0. 810 ±0. 011 , P 〈0. 01), 100 μg/L rhTNF-α seemed to sup-press the proliferation at hour 48 (0. 317 ±0. 024 vs 0. 458 ±0. 046, P 〈0. 01 ), but appeared to promote it (0. 956 ±0. 030 vs 0. 810 ±0. 011, P 〈0. 01 ) at hour 96. rhTNF-α( 1, 5, 10, 50 and 100 μg/ L) significantly increased VEGF, FGF-2 and IGF-1 production of hADSCs versus the control (0μg/L) (P 〈 0. 01 ). After osteogenie differention, the secretion of the three growth factors of hADSCs ( without rhTNF-μ treated) was elevated with the days increasing. Under the stimulus of 10 μg/L rhTNF-α, the hADSCs after 1 day of osteogenic differentiation significantly increased the secretion of VEGF ( P 〈 0. 01 ) compared with the group without rhTNF-α treated; after 3 and 7 days of osteogenic differentiation, the hADSCs significantly increased the secretion of VEGF (P 〈 0. 01 ), FGF-2 ( P 〈 0. 05 ) and IGF-1 ( P 〈 0. 05). However, after 14 days of osteogenic differentiation, 10 μg/L rhTNF-α appeared to suppress the production of VEGF (P 〈0. 01 ), FGF-2 (P 〈0. 05) and IGF-1 (P 〈0. 05) of the differentiated hADSCs. Conclusion: Within certain concentration range, rhTNF-α can promote the proliferation of hADSCs and the production of VEGF, FGF-2 and IGF-1. The effect of 10 μg/L rhTNF-α on the production of VEGF, FGF- 2 and IGF-Ⅰ of the differentiated hADSCs varied at different stages of osteogenic differentiation.
出处 《北京大学学报(医学版)》 CAS CSCD 北大核心 2009年第5期565-570,共6页 Journal of Peking University:Health Sciences
基金 国家自然科学基金(30200319)资助~~
关键词 肿瘤坏死因子α 脂肪组织 间质细胞 血管生成诱导剂 Tumor necrosis factor-alpha Adipose tissue Stromal cells Angiogenesis inducing agents
  • 相关文献

参考文献16

  • 1Liu Yunsong, Zhou Yongsheng, Feng Hailan, et al. Injectable tissue-engineered bone composed of human adipose-derived stromal cells and platelet-rich plasma[ J]. Biomaterials, 2008, 29 (23) : 3338 - 3345.
  • 2Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine [ J ]. Circ Res, 2007, 100 (9) : 1249 - 1260.
  • 3ZHOU Yong-sheng LIU Yun-song TAN Jian-guo.Is 1, 25-dihydroxyvitamin D_3 an ideal substitute for dexamethasone for inducing osteogenic differentiation of human adipose tissue-derived stromal cells in vitro?[J].Chinese Medical Journal,2006(15):1278-1286. 被引量:23
  • 4周永胜,刘云松,周书敏,谭建国.人脂肪基质细胞的分离、培养、增殖及传代稳定性[J].口腔颌面修复学杂志,2006,7(3):161-163. 被引量:6
  • 5Hattori H, Sato M, Masuoka K, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an ahernative stem cell source [ J ]. Cells Tissues Organs, 2004, 178 ( 1 ) : 2 - 12.
  • 6Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[ J]. Mol Biol Cell, 2002, 13 (12) : 4279 -4295.
  • 7Solchaga LA, Penick K, Porter JD, et al. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrowderived mesenchymal stem cells [ J ]. J Cell Physiol, 2005, 203 (2) : 398 - 409.
  • 8Kaigler D, Krebsbach PH, Polverini PJ, et al. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells [ J ]. Tissue Eng, 2003, 9 ( 1 ) : 95 - 103.
  • 9Nugent MA, Iozzo RV. Fibroblast growth factor-2[ J]. Int J Biochem Cell Biol, 2000, 32(2) : 115 - 120.
  • 10Grulich-Henn J, Ritter J, Mesewinkel S, et al. Transport of insulin-like growth factor-Ⅰ across endothelial cell monolayers and its binding to the subendothelial matrix[J]. Exp Clin Endocrinol Diabetes, 2002, 110(2) : 67 -73.

二级参考文献20

  • 1周晓东,王常勇,毛天球,李晶,赵子义.微载体悬浮培养体系对人脂肪基质干细胞增殖与分化的影响[J].中国临床康复,2005,9(22):62-64. 被引量:6
  • 2Pettersson P,Cigolini M,Sjoestroem L,et al.Cells in human adipose tissue developing into adipocytes[J].Acta Med Scand,1984,215(5):447-451
  • 3Lynch SE,Gen co RJ,Marx RE.Tissue Engineeringapplications in maxillofacial surgery and periodontics[M].Chicago:Quintessence; 1999:1-123
  • 4Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(2):143-147
  • 5Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-227
  • 6Zuk PA,Zhu M,Ashjian P,et al.Human adipose tissue is a source of multipotent stem cells[J].Molecular Biology of the Cell,2002,113:4279-4295
  • 7Kaplan FS,Hahn GV,Zasloff MA.Heterotopic ossification:two rare forms and what they can teach us[J].J Am Acad OrthopSurg,1994,2:288
  • 8Gronthos S,Franklin DM,Leddy HA,et al.Surface protein characterization of human adipose tissue-derived stromal cells[J].Jof CellPhysiol,2001,189:54-63
  • 9Masato Igarashi,Naoko Kamiya,Mitsuharu Hasegawa,Tomohiro Kasuya,Tomihisa Takahashi,Minoru Takagi.Inductive Effects of Dexamethasone on the Gene Expression of Cbfa1, Osterix and Bone Matrix Proteins During Differentiation of Cultured Primary Rat Osteoblasts[J].The Histochemical Journal.2004(1)
  • 10Yamaguchi A,Komori T,Suda T.Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Runx2/Cbfa1[].Endocr Rev.2000

共引文献26

同被引文献15

  • 1ZHOU Yong-sheng LIU Yun-song TAN Jian-guo.Is 1, 25-dihydroxyvitamin D_3 an ideal substitute for dexamethasone for inducing osteogenic differentiation of human adipose tissue-derived stromal cells in vitro?[J].Chinese Medical Journal,2006(15):1278-1286. 被引量:23
  • 2周永胜,刘云松,周书敏,谭建国.人脂肪基质细胞的分离、培养、增殖及传代稳定性[J].口腔颌面修复学杂志,2006,7(3):161-163. 被引量:6
  • 3Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13 (12) : 4279 -4295.
  • 4Zhou Y, Ni Y, Liu Y, et al. The role of simvastatin in the osteogenesis of injectable tissueengineered bone based on human adiposederived stromal ceils and platelet-rich plasma. Biomaterials, 2010, 31(20): 5325-5335.
  • 5Liu Y, Zhou Y, Feng H, et al. Injectable tissueengineered bone composed of human adiposederived stromal cells and plateletrich plasma. Biomaterials, 2008, 29 (23) : 3338-3345.
  • 6Rada T, Reis RL, Gomes ME. Adipose tissuederived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev, 2009, 15(2) : 113-125.
  • 7Dragoo JL, Lieberman JR, Lee RS, et al. Tissueengineered bone from BMP-2-transduced stem ceils derived from human fat. Plast Reconstr Surg, 2005, 115(6) : 1665-1673.
  • 8Wang P, Lin C, Smith ER, et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLLlmediated H3K4 methylation in the regulation of transeriptional initiation by RNA polymerase Ⅱ. Mol Cell Biol, 2009, 29(22) : 6074-6085.
  • 9Klose R J, Yan Q, Tothova Z, et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell, 2007, 128 (5): 889-900.
  • 10Christensen J, Agger K, Cloos PA, et al. RBP2 belongs to a family of demethylases, specific for triand dimethylated lysine 4 on histone 3. Cell, 2007, 128(6) : 1063-1076.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部