期刊文献+

多孔钛植入体表层孔隙内TGF-β_1缓释明胶微球涂层的工艺优化 被引量:3

Optimization of porous titanium coated with TGF-β_1 loaded gelatin microspheres process parameters
下载PDF
导出
摘要 采用正交试验法优化载转化生长因子β1(transforming growth factor-β1,TGF-β1)缓释明胶微球多孔钛植入体制备工艺,探讨多孔钛植入体孔隙内微球涂层的载药、释药特性。采用粉末注射成形(Metal Injection Molding,MIM)技术制备多孔钛植入体,选用明胶为TGF-β1缓释载体材料,乳化冷凝聚合交联法制备明胶微球,检测微球粒径与形貌以及载TGF-β1微球的包封率、载药率,采用渗涂法制备多孔钛表层孔隙内载TGF-β1明胶微球涂层,释放试验检测涂层的释药特性。实验结果表明,MIM技术制备的多孔钛植入体的孔隙度为(62.02±1.82)%,孔径为50~300μm,抗压缩强度为(63.23±12.81)MPa,弹性模量为(0.95±0.61)GPa。明胶微球粒径随明胶浓度的减小、搅拌速度和交联时间的增加而减小,交联剂用量对微球粒径影响无显著性差异。制备的TGF-β1明胶微球为球形,平均粒径为(21.42±3.67)μm,载药量为(0.91±0.02)μg/g,包封率为(91.41±1.82)%。TGF-β1微球涂层体外14d,时的TGF-β1释放率为(94.2±3.4)%;粒径为(21.42±3.67)μm的明胶微球的最佳工艺参数如下:明胶浓度为10%,搅拌速度为800r/min,交联剂用量为0.1mL,交联时间为2h。多孔钛植入经5%(质量分数)明胶溶液预处理后用20g/L微球渗涂可在表层孔隙内形成均匀微球涂层,且不阻塞表层孔隙,微球涂层TGF-β1释放时间为14d。 The effects of process parameters on the preparation of porous titanium coated with TGF-β1 loaded gelatin microspheres were systematically studied by orthogonal arrays design and statistical analysis method.Porous titanium implants with porosity of 60%were prepared by metal injection molding.Gelatin microspheres were prepared by improved emulsified cold condensation method and loaded with TGF-β1 by swelling in aqueous TGF-β1 solution.The morphology of the microspheres were observed by scanning electron microscopic(SEM).The encapsulation rate and drug content were tested with TGF-β1 ELISA kit.The porous titanium implants were coated with TGF-β1 loaded gelatin microspheres and characterized by drug release kinetics.The results show that the porosity and pore size of porous titanium implants are(62.02±1.82)%and 50 300μm,respectively.The compression yield strength is(49.21±10.81)MPa,and elastic modulus is(5.81±1.32)GPa.The diameter of gelatin microspheres decreases with the decrease ofgelatin concentration and the increase of stirring speed and cross-linking time.However,cross-linking agent has no distinguished influence on the diameter.The diameter of gelatin microspheres is(21.42±3.67)μm in average.The drug content is(0.91±0.02)μg/g,and encapsulation rate is(91.41±1.82)%.In vitro,(94.2±3.4)%of TGF-β1 were released after 14 d.The optimized preparation parameters of gelatin microspheres are as follows:gelatin concentration 10%(mass fraction),stirring speed 800 r/min,cross linking agent 0.1 mL,and crosslinking time 2 h.The porous titanium implants can be coated with 5%(mass fraction)gelatin and 20 g/L TGF-β1 loaded gelatin microspheres,and the structure of pores are kept completely.In vitro,TGF-β1 can be released for 14 d.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期1228-1234,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(35770576) 国家"863"计划项目(2007AA03Z114) 湖南省自然科学基金资助项目(2007JJ5109)
关键词 多孔钛 转化生长因子Β1 明胶 缓释微球 正交实验 porous titanium transforming growth factor-β1 gelatin microspheres orthogonal arrays design
  • 相关文献

参考文献24

  • 1Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopaedic applications[J]. Biomaterials, 2006, 27(13): 2651-2670.
  • 2Lee B H, Lee C, Kim D G, et al. Effect of surface structure on biornechanical properties and osseointegration[J]. Materials Science and Engineering C, 2008, 28(8): 1448-1461.
  • 3Le Guehennec L, Lopez-Heredia M A, Enkel B, et al. Osteoblastic cell behaviour on different titanium implant surfaces[J]. Acta Biomaterialia, 2008, 4(3): 535-543.
  • 4Michel B, Francesca B, Massimilliano L, et al. Effect of different growth factors on human osteoblasts activities: A possible application in bone regeneration for tissue engineering[J]. Biomolecular Engineering, 2007, 24(6): 613-618.
  • 5Liu Y L, Enggista L, Kuffer F A, et al. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration[J]. Biomaterials, 2007, 28(16): 2677-2686.
  • 6Liu Q, Rauth A M, Wu X Y, et al. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification-internal gelation-adsoiptionpolyelectrolyte coating method[J]. International Journal of Pharmaceutics, 2007, 339(1/2): 148-156.
  • 7GUO Chang-an, LIU Xue-guang. Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-β1-transfected mesenchymal stem ceils grown on chitosan scaffolds[J]. Journal of Bioscience and Bioengineering, 2007, 103(6): 547-556.
  • 8Kawai K, Suzuki S, Tabata Y, et al. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis[J]. Biomaterials, 2000, 21 (5): 489-499.
  • 9Shim W S, Kim J H, Park H, et al. Biodegradability and biocompatibility of a pH and thermo-sensitive hydrogel formed from a sulfonamide-modified poly (ε-caprolactone-co-lactide)- poly(ethyleneglycol)-poly(ε-caprolactone-co-lactide)blockcopol ymer[J]. Biomaterials, 2006, 27(30): 5178-5185.
  • 10周智华,阮建明,邹俭鹏,周忠诚,申雄军.Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide[J].中国有色金属学会会刊:英文版,2007,17(2):394-399. 被引量:5

二级参考文献26

  • 1NIIRANEN H,PYHALTO T,ROKKANEN P.In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites[J].Biomed Mater Res,2004,69A(6):699-708.
  • 2JUNG Y M,KIM S S,KIM Y H.A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering[J].Biomaterials,2005,26(32):6314-6322.
  • 3XIA Wei,CHANG Jiang.Well-ordered mesoporous bioactive glasses (MBG):A promising bioactive drug delivery system[J].Journal of Controlled Release,2006,110(3):522-530.
  • 4SARAVANAPAVAN P,HENCH L L.Low-temperature synthesis,structure,and bioactivity of gel-derived glasses in the binary CaO-SiO2 system[J].Biomed Mater Res,2001,54(6):608-618.
  • 5SEPULVEDA P,JONES J R,HENCH L L.In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses[J].Biomed Mater Res,2002,61(3):301-311.
  • 6STAMBOULIS A,HENCH L L.Bioresorbable polymers:Their potential as scaffolds for bioglasss composites[J].Key Eng Mater,2001,192(7):729-732.
  • 7STAMBOULIS A,BOCCACCINI A R,HENCH L L.Novel biodegradable polymer/bioactive glass composites for tissue engineering applications[J].Adv Eng Mater,2002,4(2):105-109.
  • 8MARCOLONGO M,DUCHEYNE P,LACOURSE W C.Surface reaction layer formation in vitro on a bioactive glass fiber/polymeric composite[J].Biomed Mater Res,1997,37(3):440-448.
  • 9ROETHERA J A,BOCCACCINIB A R,HENCH L L.Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass for tissue engineering applications[J].Biomaterials,2002,23(20):3871-3878.
  • 10MAQUET V,BOCCACCINIC A R,PRAVATAA L.Porous poly(a-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering (Ⅰ):Preparation and in vitro characterization[J].Biomaterials,2004,25(21):4185-4194.

共引文献4

同被引文献49

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部