期刊文献+

Zn,Co双掺杂近化学计量比LiNbO_3晶体的生长及性能

Growth and Properties of Zn,Co Co-doped Near-stoichiometric LiNbO_3 Crystal
下载PDF
导出
摘要 以K2O为助熔剂,应用坩埚下降法生长出了Co2+初始浓度为0.5mol%,以及ZnO分别为3mol%与6mol%的单掺与双掺杂SLN晶体(分别用SLN0,SLN3,SLN6表示)。测定了晶体上下部位的吸收与发射光谱。在晶体的吸收光谱中均可观察到520nm,549nm,612nm,1447nm四个吸收峰,表明Co2+处于晶体的八面体场中。ZnO的掺入明显地改变了吸收峰的相对强度。在520nm光的激发下,观察到776nm的荧光发射,其荧光强度的相对强弱也与ZnO的掺杂量有明显的联系。从吸收边带估算出SLN0,SLN3,SLN6晶体中Li2O的含量分别为49.06mol%,49.28mol%,49.10mol%。ZnO的掺杂量对Co2+在铌酸锂晶体中的浓度分布有很大的影响作用,当ZnO的掺入量为3mol%时,明显地抑制了Co2+在LiNbO3晶体中的掺入,当ZnO掺杂量达到6mol%时,抑制作用减弱。本文从Zn2+在LiNbO3中随浓度变化的分凝情况以及对Co2+的排斥作用解释了Co2+在晶体中的分布特性以及光谱的变化情况。 Near-stoichiometric LiNbO3 single crystals doped with 0.5mol% Co^2+ and co-doped with Co^2+ in 0.5mol%and Zn^2+ in 3 mol% and 6 mol% (designated SLN0,SLN3,SLN6,respectively) in the raw compositions were grown by the Bridgman method under the conditions of taking K2O as flux. The absorption spectra and emission spectra of upper and lower parts of crystals were measured. The absorption spectra showed the characteristic of Co^2+ in octahedral co-ordination,and four absorption peaks at 520 nm,549 nm,612 nm,1447 nm were observed in all the obtained crystals. However,the absorption intensity had an obvious change with the content of ZnO dopant. A sharp emission peak at 776 nm was observed under excitation of 520 nm light,and the emission intensity was also associated with the doping content of ZnO. The contents of Li2O were estimated from the absorption edge of SLN0,SLN3 and SLN6 to be 49.06 mol%,49.28 mol% and 49.1 mol%. The doping content of ZnO takes great effects on the distributing concentration of Co^2+ in LiNbO3 crystal. When 3% of ZnO in mole fraction is doped,the Co^2+ are suppressed effectively to enter LiNbO3 crystal sites,and the effect becomes weaker while the dopant of ZnO reaches to 6% mole fraction. The reasons for the concentration changes of Co^2+ and spectra change can be interpreted by the suppressing effect of ZnO on the incorporation of Co^2+ions and the change of distribution coefficient of Zn^2+ as its incorporating content.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2009年第5期1063-1067,共5页 Journal of Synthetic Crystals
基金 浙江省科技厅项目(No.2007C21121) 宁波市科技局项目(No.2007B10053 No.2009A610007) 宁波市重点实验室开放基金(2007A22010) 宁波市4321人才基金(No.2008119)
关键词 近化学计量比LiNbO3 助熔剂坩埚下降法 光谱 near-stoichiometric LiNbO3 single crystal flux bridgman method spectra
  • 相关文献

参考文献13

  • 1Wehlecke M, Corradi G, Betzler K. Optical Methods to Characterise the Composition and Homogeneity of Lithium Niobate Single Crystals[ J]. Appl, Phys. B, 1996, 63(4) :323-330.
  • 2仲跻国 靳健 吴仲康.掺镁铌酸锂晶体光折变效应的测定.南开大学学报,1980,1:59-62.
  • 3Volk T R, Pryalkin V T, Rubinina N M. Optical-damage-resistence Impurities in Lithium Niobate[J]. Opt. Lett. , 1990,15(18) :996-998.
  • 4陈晓军,李兵,朱登松,李冠告,陈绍林,黄自恒,吴仲康.近化学计量比LiNbO_3晶体的生长及其组分测定[J].人工晶体学报,2001,30(2):129-134. 被引量:14
  • 5Malovichko G I, Grachev V G, Kokanyan E P, et al. Characterization of Stoichiometric LiNbO3 Growth from Melts Containing K2O[ J]. Appl. Phys. A, 1993, 56:103-107.
  • 6Lu B, Xu J, Li X, et al. Bottom Seeded Solution Growth of Near-stoichiometric LiNbO3 Single Crystals[J]. Journal of Alloys and Compounds, 2008, 449(1-2) :224-227.
  • 7陆宝亮 徐家跃 范世马岂 等.近化学计量比LiNbO3晶体的坩锅下降法生长.硅酸盐通报,2005,32(3):255-258.
  • 8Malovichko G I, Grachev V G, Yurchenko L P, et al. Improvement of LiNbO3 Microstructure by Crystal Growth with Potassium[ J]. Phys. Status Solid A, 1992, 133: K29-K32.
  • 9Hu M L, Chia C T, Chang J Y, et al. Low Temperature Raman Study of Zinc Doped Lithium Niobate Crystal Powders[J]. Mater. Chem. Phys. , 2002,78:358-362.
  • 10Wood D L, Remeika J P. Optical Absorption of Tetrahedral Co^3+ and Co^2+ in Garnets [J]. J. Chem. Phys. , 1967, 46(9) :3595-3602.

二级参考文献13

  • 1任立勇,刘立人,刘德安.双掺杂LiNbO_3微观光学参量对衍射效率的影响[J].光学学报,2004,24(7):941-946. 被引量:11
  • 2许心光,许贵宝,胡大伟,王正平,杨旭东,邵宗书,徐悟生,徐玉恒.掺Ce,Fe系列LiNbO_3晶体光折变效应光存储特性[J].光学学报,2004,24(7):947-952. 被引量:7
  • 3J. F. Donegan, F. G. Anderson, F. J. Bergin et al.. Optical and magnetic-circular-dichroism optically detected magnetic-resonance study of the Co^24 ion in LiGa5O8[J]. Phys. Rev. B,1992, 45(2),563-573.
  • 4N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky et al.. Absorption and luminescence of tetrahedral Co^24 ion in MgAI2O4[J]. J. Luminescence, 1993, 55(5,6):265-269.
  • 5X. L. Duan, D. R. Yuan, X. F. Chcng et al.. Optical absorption of Co^24 - doped silica gel-derived glasses[J]. Oplical Malerials, 2003, 23:327 - 330.
  • 6Haiping Xia,Hongwei Song .Sianlin Zeng et al.. Growth and fluorescence spectra of LiNbO3 single crystals doped with Eu^34 by Bridgman method[J].Materials Chemistry and Physics,2004.85(2,3):280-285.
  • 7Hongbing chen, Haiping Xia, Jinhao Wang et al.. Growth of LiNbO3 crystals by the Bridgman method[J]. Journal of Crystal Growth.2003.256(3,4):219-222.
  • 8Haiping Xia, Hongwei song, Jinhao Wang et al.. Cr^3 -doped LiNbO3 crystals growth by the Bridgman method[J]. Cryst.Res.Technol..2005.40(3):199-203.
  • 9N. lyi, K. Kitamura, Y. Yajima et al., Defect structure model of MgO-doped LiNbO3[J]. J. Solid State Chem. , 1995, 118(1):148-152.
  • 10D.L.Wood.J.P.Remekika. Optical absorption of tetrahedral Co^34 and Co^24 in garnets[J].J.Chem.Phys..1967.46(9):3595-3602.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部