期刊文献+

压缩传感方位估计 被引量:2

Bearing Estimation of Compressed Sensing
原文传递
导出
摘要 信源方位估计是阵列信号处理的一个重要问题。基于信源空间分布稀疏的本质,利用压缩传感理论,构造出一种稀疏信源方位估计模型,仿真结果表明,在不考虑噪声的理想情况和满足压缩传感的条件下,不仅可以准确的恢复出原始信源的方位,而且精确的得到各个信源信号的强度,并且,这种新的模型只需要一次时间采样,从而大大降低了成本。 Sources hearing estimation is an important issue in array signal processing area. In this paper, based on the sparsity essence of source spatial distribution and by using compressed sensing theory, anew sparse source bearing estimation model is constructed. The simulation result shows that, under the ideal noise-free environment and the satisfaction of compressed sensing theory, precise estimation of the original sources bearing is realized while the exact source signal strength is obtained, and this new model demands only one single time sampling, thus greatly reducing the cost.
出处 《通信技术》 2009年第11期182-184,共3页 Communications Technology
关键词 压缩传感 压缩采样 空间稀疏性 方位估计 compressed sensing compressed sampling spatial sparsity bearing estimation
  • 相关文献

参考文献7

  • 1令瀚,黄志清,张丽娅.基于均匀线阵的混合源波达方向估计方法[J].通信技术,2009,42(1):123-125. 被引量:4
  • 2令瀚,李德生,叶中付.一种空间非均匀噪声环境下DOA估计的改进方法[J].通信技术,2008,41(9):196-198. 被引量:5
  • 3Van Trees H L. Optimum array processing, Detection, Estimation, and Modulation Theory, vol. Ⅳ[M]. USA: Wiley, 2002.
  • 4Gorodnitsky I F, Rao B D. Sparse Signal Reconstruction from Limited Data Using Focuss: A E-Weighted Minimum Norm Algorithm[J]. IEEE Transactions on Signal Processing, 1997,45(03):600-616.
  • 5Malioutov D, Cetin M, Willsky A S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays[J]. IEEE Transactions on Signal Processing, 2005,53(08):3010-3022.
  • 6Cevher V, Gurbuz A C, McClellan J H, et al. Compressive Wireless Arrays for Bearing Estimation[C]. Las Vegas:[s.n.], 2008:2497-2500.
  • 7Baraniuk R G. Compressive Sensing[J]. IEEE Signal Processing Magazine, 2007, 24(04):118-121.

二级参考文献17

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans AP, 1986,34(3):276-280.
  • 2Don Torrieri, Kesh Bakhru. The Effects of Nonuniform and Correlated Noise on Superresolution Algorithms[J]. IEEE Trans AP, 1997, 45(8):1214-1218.
  • 3Fu Li, Yaccaro R. Performance degradation of DOA estimators due to unknown noise fields[J]. IEEE Trans. on SP, 1992, 40(3): 686-690.
  • 4Goransson B, Ottersten B. Direction Estimation in Partially Unknown Noise Fields[J]. IEEE Trans. on SP, 1999, 47(9): 2375-2384.
  • 5Alireza Moghaddamjoo. Transform-Based Covariance Differencing Approach to the Array with Spatially Nonstationary Noise[J]. IEEE Trans. on SP, 1991, 39(1): 219-221.
  • 6Marius Pesavento, Alex B. Gershman. Maximum-Likelihood Direction-of-Arrival Estimation in the Presence of Unknown Nonuniform Noise[J]. IEEE Trans. on SP, 2001, 49(?): 1310-1324.
  • 7Yuntao WU, Chaohuan Hou, Guisheng LIAO and Qinghua Guo. Direction-of-Arrival Estimation in the Presence of Unknown Nonuniform Noise Fields[J]. IEEEJ. Oceanic Engineering, 2006, 31(2): 504-510.
  • 8Schmidt R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. Antennas Propagat., 1986, 34(3): 276-280.
  • 9Roy R, Kailath T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans. ASSP, 1989, 37(7):984- 995.
  • 10Pillai S U, Kwon B H. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification [J]. IEEE Trans ASSP, 1989, ASSP-37(1): 8-15.

共引文献6

同被引文献14

  • 1孙红岩,毛士艺.推广的多传感器数据的分层融合算法[J].北京航空航天大学学报,1996,22(1):16-20. 被引量:6
  • 2孙红岩,毛士艺,林品兴.多传感器数据分层融合的性质[J].电子学报,1996,24(6):55-61. 被引量:29
  • 3崔培玲,王桂增,潘泉.一类动态多尺度系统融合估计算法的分析[J].控制理论与应用,2007,24(1):84-89. 被引量:2
  • 4D. Donoho. Compressed sensing[J]. IEEE Transactions on In formation Theory, 2006,52 (4) : 1289-1306.
  • 5SHI Guangming, LIN Jie, CHEN Xuyang, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Transactions On circuits and systems- II : Express briefs, 2008,55 (4) : 379-383.
  • 6J. Haupt, R. Nowak. Signal reconstruction from noisy random projections [J]. IEEE Transactions on Information Theory, 2006,52(9) :4036- 4048.
  • 7D. Baron, M. Wakin, M. Duarte, et al. Distributed com pressed sensing[R]. Technical Report, Rice University,2006.
  • 8W. Wang, M. Garofalakis, K. Ramchandran. Distributed sparse random projections for refinable approximation [C]// Proceedings of the 6th International ymposium on Information Processing in Sensor Networks, New York, Association for Computing Machinery, 2007 : 331-339.
  • 9C. La, M. N. Do. Signal reconstruction using sparse tree representation[C]//Proceedings of SPIE. San Diego, CA, United States: International Society for Optical Engineering, 2005,5914:1-11.
  • 10D. L. Donoho, Y. Tsaig, I. Drori, et aI. Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit[R]. Technical Report,2006.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部