摘要
信源方位估计是阵列信号处理的一个重要问题。基于信源空间分布稀疏的本质,利用压缩传感理论,构造出一种稀疏信源方位估计模型,仿真结果表明,在不考虑噪声的理想情况和满足压缩传感的条件下,不仅可以准确的恢复出原始信源的方位,而且精确的得到各个信源信号的强度,并且,这种新的模型只需要一次时间采样,从而大大降低了成本。
Sources hearing estimation is an important issue in array signal processing area. In this paper, based on the sparsity essence of source spatial distribution and by using compressed sensing theory, anew sparse source bearing estimation model is constructed. The simulation result shows that, under the ideal noise-free environment and the satisfaction of compressed sensing theory, precise estimation of the original sources bearing is realized while the exact source signal strength is obtained, and this new model demands only one single time sampling, thus greatly reducing the cost.
出处
《通信技术》
2009年第11期182-184,共3页
Communications Technology
关键词
压缩传感
压缩采样
空间稀疏性
方位估计
compressed sensing
compressed sampling
spatial sparsity
bearing estimation