摘要
基于物理模型的图像重建算法评价方法,作者研究设计的SASART算法,给出了常用算法SVD,CG,LSQR,阻尼LSQR,SIRT,SART及SASART的测试结果。测试数据表明:(1)线性成像方程系统的特性(条件数)及解结构都对解精度有影响,解模型越粗糙,解的精度越低;(2)自激励联合迭代重建算法(SASART)迭代稳定、抗噪音能力强,用于高噪数据反演能获得合理的图像;(3)各种求解算法都具有平滑效应,同时也都会产生误差很大(>150%)的奇异解;(4)小的数据拟合差并不一定指示解的精度高;(5)对含误差数据,应用阻尼LSQR或SASART算法进行成像反演。
Imaging inversion plays an important role in tomography techniques. A model based evaluation method for the imaging inversion algorithms and a new imaging inversion algorithm SASART are introduced in this article. Some algorithms in common use are verified using the model based evaluation method and the test data show that: (1) both the singularity of the linear equation system and the style of the solution model (physical model) have effects on the precision of the solution , the more rough the solution model, the less the precision of the solution will be; (2) algorithm SASART has the power to obtain logical image for high noise data inversion; (3) each algorithm has an effect of smoothing and may, at same time, export some singularity solution elements with large error(>150%); (4) good data fit does not always indicate good solution; (5)for an imaging inversion with high noise in the data, Damping LSQR or SASART should be used.
出处
《成都理工学院学报》
CSCD
1998年第4期473-479,共7页
Journal of Chengdu University of Technology
基金
国家自然科学基金
中国博士后基金
关键词
线性方程组
迭代算法
奇异解
地球物理勘探
linear system of equations
iterative algorithm
solution evaluation
singularity solution