摘要
由于连续函数迭代映射的符号动力学在实际应用中的局限性,因此对非连续函数的符号动力学的研究是更具有实际应用的意义,正为人们普遍关注。混沌运动与周期轨道有着密切关系,本文讨论裂峰映射倍周期分岔过程中的复杂性,这表明裂峰映射通往混沌道路的多样性。并在可允条件下,简要给出倍周期生成规则的证明方法。
The research of symbolic dynamics on non consecutive maps is more practical than that of consecutive maps, especially in high dimensional space. The chaos is closely connected with periodic orbits, so in this paper we will discuss the complication of period doubling bifurcation in gap map, it implies that routes to chaos in gap map are diversified.
出处
《云南师范大学学报(自然科学版)》
1998年第3期55-59,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
云南省应用基础研究基金资助
关键词
符号动力学
裂峰映射
倍周期分岔
复杂性
Symbolic dynamics gap map admissibility condition period doubling bifurcation