摘要
一个不含具有t个顶点的导出路的图被称为是Pt-自由的.一个连通图G的i-中心是由V(G)中所有距其它任何顶点的距离不大于i的顶点组成的集合.对于V(G)的两个子集S和T,如果对任何x∈T都有y∈S,使得x距y的距离不大于d,则称Sd-支配T.本文解决了由O.Favaron和J.L.Fouquet提出的一个公开问题,即证明了如下结果:对任何Pt-自由图G,如果i|t/2|且p1,则Ci(G)(p+1)-支配Ci+p.
A graph is said to be P t free whenever it dose not contain an induced path on t vertices.The i center of a connected graph G is the set of vertices whose distance from any other vertex is at most i. A subset S of V(G) d dominates a subset T of V(G) if for every vertex x∈T there is a vertex y∈S whose distance from x is at most d. In this note,it is proved that in any connected P t free graph G, C i+p (G) is (p+1) dominated by C i(G) for every i|t/2| and p1, which was proposed by O.Favaron and J.L.Fouquet as an open problem.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1998年第6期750-752,共3页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金