期刊文献+

多波前算法在电力系统分析计算中的应用

Multifrontal Algorithm and Its Application in Power System Analysis and Calculations
下载PDF
导出
摘要 在介绍和比较多波前算法(multifrontal algorithm,MA)和传统的稀疏三角分解技术的基础上,把MA应用于IEEE118节点系统、IEEE300节点系统的潮流计算以及IEEE145节点系统的暂态稳定性分析计算,得出结论:应用MA的潮流计算和暂态稳定性的分析计算比采用传统的稀疏三角分解技术计算要快,加速比明显,而且应用的规模大,此外,鉴于MA具有的并行特性,它是解决现代大规模电力系统实时计算及控制的有效途径,适合于可重构系统的计算。 The multifrontal algorithm(MA)and conventional direct sparse factorization method are described and compared.Upon applying MA to load flow calculation of IEEE 118 and IEEE 300 node systems as well as the transient stability analysis and computation of IEEE 145 node system,it is concluded that the load flow calculation and transient stability analysis using MA has higher efficiency,more obvious speed-up ratio and larger application scope than conventional direct sparse factorization technique.Furthermore, due to its parallelism, MA is an effective solution to real-time calculation and control of modern large power system and applicable to the computation of reconfigurable system.
出处 《广东电力》 2009年第10期5-8,共4页 Guangdong Electric Power
关键词 多波前算法 潮流 暂态稳定性 并行计算 可重构计算 multifrontal algorithm(MA) load flow transient stability parallel computing reconfigurable computing
  • 相关文献

参考文献16

  • 1TINNEY W F, WALKER J W. Direct Solution of Sparse Network Equations by Optimally Ordered Triangular Factorization[J]. Proc. of the IEEE, 1967, 55(11): 1801 - 1809.
  • 2DUFF I S. The Multi-frontal Solution of Indefinite Sparse Symmetric Linear Systems[J]. ACM Trans. on Mathematical Software, 1983, 9(3) : 302 - 325.
  • 3DUFF I S, REID J. The Multi-frontal Solution of Unsymmetric Sets of Linear Systems[J]. SIAM Journal on Scientic and Statistical Computing, 1984, 5(4) : 633- 641.
  • 4LIU J. The Mul-tifrontal Method for Sparse Matrix Solution: Theory and Practice[J]. SlAM Review, 1992, 34 ( 1 ) : 82-109.
  • 5DAVIS T A, DUFF 1 S. An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization[J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18(1): 140- 158.
  • 6DAVIS T A, DUFF I S. A Combined Unifrontal/Multifrontal Method for Unsymmetric Sparse Matrices[J]. ACM Trans. on Mathematical Software. 1997, 25(1): 1 - 19.
  • 7DAVIS T A. Algorithm 832: UMFPACK An Unsymmetric- Pattern Multi-frontal Method [J]. ACM Trans. on Mathe- matical Software, 2004, 30(2) : 196 - 199.
  • 8ORFANOGIANNI T, BACHER R. Using Automatic Code Differentiation in Power Flow Algorithms[J]. IEEE Trans. on Power Systems, 1999, 14(1): 138- 144.
  • 9KHAITAN S K, MCCALLEY J D, CHEN Q M. Multi-frontal Solver for Online Power System Time-Domain Simulation[J]. IEEE Trans. on Power Systems, 2008, 23(4): 1727- 1737.
  • 10BONDALAPATI K, PRASANNA V K. Reconfigurable Computing: Architectures, Models and Algorithms [J]. Current Science, 2000, 78(7) : 828 - 837.

二级参考文献22

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部