期刊文献+

A Note on Tropical Triangles in the Plane

A Note on Tropical Triangles in the Plane
原文传递
导出
摘要 We define transversal tropical triangles (affine and projective) and characterize them via six inequalities to be satisfied by the coordinates of the vertices. We prove that the vertices of a transversal tropical triangle are tropically independent and they tropically span a classical hexagon whose sides have slopes ∞, 0, 1. Using this classical hexagon, we determine a parameter space for transversal tropical triangles. The coordinates of the vertices of a transversal tropical triangle determine a tropically regular matrix. Triangulations of the tropical plane are obtained. We define transversal tropical triangles (affine and projective) and characterize them via six inequalities to be satisfied by the coordinates of the vertices. We prove that the vertices of a transversal tropical triangle are tropically independent and they tropically span a classical hexagon whose sides have slopes ∞, 0, 1. Using this classical hexagon, we determine a parameter space for transversal tropical triangles. The coordinates of the vertices of a transversal tropical triangle determine a tropically regular matrix. Triangulations of the tropical plane are obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第11期1775-1786,共12页 数学学报(英文版)
基金 supported by MTM 2005-02865 UCM 910444
关键词 tropical triangles tropical triangulation linear inequalities CONVEXITY tropical semi-field tropical triangles, tropical triangulation, linear inequalities, convexity, tropical semi-field
  • 相关文献

参考文献37

  • 1Cuninghame-Green, R. A., Butkovic, P.: Bases in max-algebra. Linear Algebra Appl., 389, 107-120 (2004).
  • 2Wagneur, E.: Moduloids and pseudomodules. Dimension theory. Discr. Math., 98, 57-73 (1991).
  • 3Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math., 9, 1-27 (2004); Erratum in Doc. Math. 9, 205-206 (2004).
  • 4Joswig, M.: Tropical halfspaces, in J. E. Goodman, J. Pach and E. Welzl (eds.), Combinatorial and Computational Geometry, Cambridge University Press, 2005, MSRI Publications 52,409-431.
  • 5Izhakian, Z.: Duality of tropical curves, arXiv:math/0503691 (2005).
  • 6Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry, in: Idempotent Mathe- matics and Mathematical Physics, Proceedings Vienna 2003, Litvinov, G. L., Maslov, V. P. (eds.), American Mathematical Society, Contemp. Math., 377, 2005, 289-317.
  • 7Tabera, L. F.: Tropical constructive Pappus's theorem. IMRN, 39, 2373-2389 (2005).
  • 8Jensen, A. N., Markwig, H., Markwig, T.: An algorithm for lifting points in a tropical variety. Collect. Math., 59, 129-165 (2008).
  • 9Tabera, LI F.: Tropical plane geometric constructions: a transfer technique in tropical geometry, arXiv: math/0511713 (2007).
  • 10Ansoia, M.: Propiedades m@tricas de las conicas tropicales, Trabajo de investigacion DEA, Facultad de Matematicas, UCM, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部