期刊文献+

New Characterizations of Inhomogeneous Besovand Triebel-Lizorkin Spaces over Spaces of Homogeneous Type

New Characterizations of Inhomogeneous Besovand Triebel-Lizorkin Spaces over Spaces of Homogeneous Type
原文传递
导出
摘要 In this paper we use the T1 theorem to prove a new characterization with minimum regularity and cancellation conditions for inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type. These results are new even for R^n. In this paper we use the T1 theorem to prove a new characterization with minimum regularity and cancellation conditions for inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type. These results are new even for R^n.
作者 Yan Chang HAN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第11期1787-1804,共18页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos.10726071,10571182)
关键词 T1 theorem inhomogeneous Besov and Triebel-Lizorkin spaces discrete Calderon repro-ducing formula inhomogeneous Plancherel-Polya inequalities T1 theorem, inhomogeneous Besov and Triebel-Lizorkin spaces, discrete Calderon repro-ducing formula, inhomogeneous Plancherel-Polya inequalities
  • 相关文献

参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部