摘要
研究GPS接收机状态解算的估计方法,方法利用Hopfield神经网络对GPS接收机数据进行处理.结果以统计算术平均误差和均方根误差作为衡量性能的指标,神经网络方法与迭代最小均方误差算法相比较定位误差减小.结论利用神经网络实现GPS接收机状态解算是可行的,且与迭代最小均方误差算法比较,可提高定位精度.
Aim study the estimation algorithm of the GPS receiver state solution.Methods A Hopfield neural network was used to process the GPS receiver data.Results Compared with the recursive least square(RMS) algorithm,the solution error of Neural Network was reduced both in mean bias and in rms error. Conclusion It is a success to use neural network in the estimation of GPS navigation solution, and THE accuracy is improved.
出处
《北京理工大学学报》
EI
CAS
CSCD
1998年第5期596-599,共4页
Transactions of Beijing Institute of Technology
关键词
导航定位
神经网络
均方误差算法
GPS
接收机
navigation and positioning: neural network
mean square error algorithm
GPS receiver