摘要
在稀薄气体条件下,采用化学吸附的双自由度振动模型可以得到气体分子的振动能量分布形式为,从而避免了人为假设固体表面位点的能量分布形式的困难。在有解吸位阱存在时,稀薄气体体系达不到热力学平衡态。
The vibrational energy distribution medea of the rarefied gas havebeen derived as FM_(E)dE =(1/kT)e^(-E/kT) dE from the bi-freedom vibration model of chemical adsorption. Therefore, the pre-assumption of the energy distribution mode of the solid surface sites is unnecessary. Under the existence of the desorption well, the rarefied gas can not approach thermodynamic equilbrium state.
关键词
气固吸附
能量分布
热力学平衡
gas-solid adsorption, thermodynamic equilibrium, euergy distribution, chemical adsorption model.