期刊文献+

基于不同算法的Motif预测比较分析与优化 被引量:6

Comparison, Analysis and Optimization of Motif Finding Based on Different Algorithms
下载PDF
导出
摘要 研究转录因子结合位点(TFBs)的主要预测模型及其预测的算法,通过基于调控元件预测的3种代表性的算法MEME、Gibbs采样和Weeder预测拟南芥基因组。比较结果表明,Gibbs采样算法和Weeder算法预测长、短motif效率较高。重点分析MEME算法,提出结合不同算法查找motif的优化方法,并以实验验证该方法能有效提高预测效率。 This paper studies some models and discrimination algorithms of Transcription Factor Binding sites(TFBs). Experiment compares advantages and disadvantages in three representative discrimination algorithms which are based on regulation elements, including MEME, Gibbs sample and Weeder through predicting arabidopsis thaliana genome, against Gibbs sampling algorithm and Weeder algorithms are forecast long and short motif of the characteristics of high efficiency, MEME is intensively analyzed, and proposed an effective way to forecast motifs through MEME binding other discrimination algorithms. Experimental result proves that the method can improve the efficiency of motif finding efficiently.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第22期94-96,99,共4页 Computer Engineering
基金 国家自然科学基金资助项目(30600329)
关键词 转录因子结合位点 motif预测 算法比较 Transcription Factor Binding sites(TFBs) motif finding algorithm comparison
  • 相关文献

参考文献4

  • 1Thakurta D G Computational Identification of Transcriptional Regulatory Elements in DNA Sequence[J]. Nucleic Acids Research, 2006, 34(12), 3585-3598.
  • 2Martin T, Li Nan, Timothy L B, et al. Assessing Computational Tools for the Discovery of Transc_ription Factor Bingding Sites[J].Nature Biotechnology, 2005, 23(1): 137-144.
  • 3Obayshi T, Kinoshita K, Nakai K, et al. ATTED-II: A Database of Co-expressed Genes and CIS Elements for Identifying Co-regulated Gene Groups in Arabidopsis[J]. Nucleic Acids Research, 2007, 35(Database Issue): 863-869.
  • 4Timothy L B, Nadya W, Chris M, et al. MEME: Discovering and Analyzing DNA and Protein Sequence Motifs[J]. Nucleic Acids Research, 2006, 34(Web Server Issue): 369-373.

同被引文献36

  • 1杜春娟,朱云平,贺福初,曾衍钧.蛋白质家族模体(motif)的评价策略[J].北京生物医学工程,2005,24(2):97-102. 被引量:4
  • 2杜耀华,倪青山,王正志.利用序列保守模体和局部构象信息预测转录因子结合位点[J].生命科学研究,2006,10(3):215-223. 被引量:4
  • 3王维彬,钟润添.一种基于贪心EM算法学习GMM的聚类算法[J].计算机仿真,2007,24(2):65-68. 被引量:15
  • 4M Tompa, N Li, T L Bailey, et al.assessing computational tools for the discovery of transcription factor binding sites [J].Nat Biotechnol,2005,23:137- 144.
  • 5T L Bailey. Discovering Motifs in DNA and protein sequences:the appoximate common substring problem [D].University of California, San Diego, 1995.
  • 6T L Bailey,C Elkan.Unsupervised learning of multiple Motifs in biopolymers using expectation maximization[J].Machine Learning,1995,21:51-83.
  • 7Timothy L B,Charles E. The value of prior knowledge in dis- covering Motifs with MEME [ C ]//Proceeding of the Third In-ternational Conference on intelligent Systems for Molecular Bi- ology. Menlo Park, California : [ s. n. ], 1995:21-29.
  • 8张斐 徐利.一种基于贪心EM的改进预测算法.计算机工程,2010,22(1):35-37.
  • 9Attwood T K,Croning M D R, Flower D R, et al. PRINT-S: the database formerly known as PRINTS [ J ]. Nucleic Acids Res ,2000,28:225 -227.
  • 10Pavesi G, Mereghetti P, Zambelli F, et al. MoD Tools : regula- tory Motif discovery in nucleotide sequences from co-regula- ted or homologous genes [ J ]. Nucleic Acids Res, 2006,34: 566-570.

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部