摘要
将径向基函数神经网络与横向均衡器相结合,采用递推最小二乘算法更新权值。将最小二乘误差作为代价函数以及与误差相关的变步长,使输出误差较传统的神经网络均衡器进一步减小,收敛速度得到提高。仿真结果表明,该均衡器对线性信道和非线性信道都表现出较好的性能,在较严重的非线性情况下其优越性更明显。
This paper combines Radial Base Function(RBF) neural network and landscape filter, uses Recursive Least Square(RLS) algorithm to update the weight and uses variable steps associated with errors, the output error and the convergence speed are both improved. Simulations results show that the new equalizer has better performance, whether it is in linear or nonlinear. In more serious cases, its advantages are much more obvious.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第22期200-201,204,共3页
Computer Engineering
基金
新疆维吾尔自治区高校科学研究计划基金资助项目(XJEDU2006I10)
关键词
径向基函数神经网络
递推最小二乘算法
代价函数
Radial Base Function(RBF) neural network
Recursive Least Square(RLS) algorithm
cost function