期刊文献+

基于多样性反馈的粒子群优化算法 被引量:15

Particle Swarm Optimization Algorithm Based on Diversity Feedback
下载PDF
导出
摘要 利用粒子群多样性的反馈信息,给出带有粒子群多样性测度反馈控制的新惯性权值动态自适应调节方法,有效地维持进化初期的种群多样性,降低粒子群优化算法在进化初期发生早熟的风险,提高最优化解的精度,减小种群规模对优化精度的影响。几个典型函数的仿真结果以及与2种典型的惯性权值调节粒子群算法的比较结果表明了算法的有效性。 A new method of adjusting inertial weight adaptively with diversity feedback control is proposed. The diversity of swarm is maintained especially in the early phase of iterations. The risk of premature convergence is reduced and the precision of the optimum is improved remarkably, the influence of the swarm size on an optimum is weakened. The efficiency of the algorithm is verified by the simulation results of three benchmark functions and the comparison with two adaptive inertial weight Particle Swarm Optimization(PSO) algorithms.
作者 焦巍 刘光斌
出处 《计算机工程》 CAS CSCD 北大核心 2009年第22期202-204,共3页 Computer Engineering
关键词 粒子群优化 多样性 惯性权值 Particle Swarm Optimization(PSO): diversity: inertial weight
  • 相关文献

参考文献6

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of ICNN'95. Perth, Australia: [s. n.], 1995.
  • 2Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proceedings of the IEEE Conference on Evolutionary Computation. Singapore: [s. n.], 1998.
  • 3Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimization[C]//Proc, of Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 4Qin Zheng, Yu Fan, Shi Zhewen, et al. Adaptive Inertia Weight Particle Swarm Optimization[C]//Proc. of ICAISC'06. Kunming, China: [s. n.], 2006.
  • 5Chatterjee A, Siarry P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J]. Computers & Operations Research, 2006, 33(3): 859-871.
  • 6Riget J, Vesterstr J S. A Diversity-guided Particle Swarm Optimizer the ARPSO[EB/OL]. [2008-12-23]. http://www.evalife.dk.

同被引文献103

引证文献15

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部