期刊文献+

改进的SVDD增量学习算法 被引量:6

Improved Incremental Learning Algorithm for Support Vector Data Description
下载PDF
导出
摘要 通过对SVDD增量学习中原样本和新增样本的特性分析,提出一种改进的SVDD增量学习算法。在增量学习过程中,该算法选取原样本的支持向量集和非支持向量中可能转为支持向量的样本集以及新增样本中违反KKT条件的样本作为训练样本集,舍弃对最终分类无用的样本。实验结果表明,该算法在保证分类精度的同时减少了训练时间。 An improved incremental learning algorithm for Support Vector Data Description(SVDD) is presented through the characteristic analysis of old samples and new samples. In the course of incremental learning, support vecter set and non-support vector set which may be converted into support vector in old samples and samples which violate Karush-Kuhn-Tucker(KKT) condition in new samples are chosen as training samples and the useless samples are discarded in this algorithm. Experimental results show that the training time is greatly reduced while the classification precision is guaranteed.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第22期210-211,215,共3页 Computer Engineering
基金 盐城工学院重点学科建设基金资助项目(XKY2007065)
关键词 支持向量数据描述 KKT条件 支持向量 增量学习 Support Vector Data Description(SVDD) Karush-Kuhn-Tucker(KKT) condition support vector incremental learning
  • 相关文献

参考文献11

二级参考文献45

共引文献132

同被引文献50

  • 1滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J].计算机工程与应用,2004,40(36):77-80. 被引量:7
  • 2席军,刘廷华.PTC热敏电阻的开发应用现状[J].塑料,2005,34(4):79-84. 被引量:24
  • 3Scholkopf B. Estimating the Support of a High-dimensional Distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
  • 4Tax D M J, Duin R P W. Support Vector Data Description[J]. Machine Learning Research, 2004, 54(1): 45-56.
  • 5Cohen G Hilario M. One-class Support Vector Machines with a Conformal Kernel A Case Study in Handling Class'Imbalance[C]// Proc. of SSPR & SPR'2004. [S. l.]: Springer, 2004: 850-858.
  • 6Wu Mingrui, Scholkopf B, Bakir G. A Direct Method for Building Sparse Kernel Learning Algorithms[J]. Machine Learning Research, 2006, 7: 603-624.
  • 7Zhuang Ling, Dai Honghua. Parameter Optimization of Kernel- based One-class Classifier on Imbalance Learning[J]. Journal of Computers, 2006, 1(7): 32-40.
  • 8Tax D M J, Duin R P W. Uniform Object Generation for Opti- mizing One-class Classifiers[J]. Machine Learning Research, 2001, 2: 155-173.
  • 9Hur A B, Horn D. Support Vector Clustering[J]. Journal of Machine Learning Research, 2001, 2: 125-137.
  • 10Tax D M J, Duin R P W. Combining One-class Classifiers[C]// Proc. of the 2nd International Workshop on Multiple Classifier Systems. London, UK: Springer-Verlag, 2001: 299-308.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部