摘要
在研究对极几何和透视投影不变量的基础上,提出并解决了在计算基础矩阵(F矩阵)时的共面点冗余性问题,即一个平面上至多有5个点可用作匹配点,其余的点均为冗余点,并从理论上证明了其存在性.最后通过去除冗余点提高了F矩阵的精度和稳定性.
The redundancy and its settlement of coplanar points in computing the fundamental matrix (F) is developed, based on the contribution of epipolar geometry and perspective geometric invariants. The redundancy means that, on a plane, there are at most five points which can be used as matching points to estimate the F, and the others are the redundant points, whose existence is proved theoretically. Finally, the accuracy and stability of F are improved by eliminating the redundant points.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
1998年第5期679-683,共5页
Journal of Xidian University
基金
国家自然科学基金
中法先进研究计划
关键词
对极几何
几何不变量
共面点
冗余性
矩阵
epipolar geometry geometric invariants redundancy of coplanar points