摘要
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P〈0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.