期刊文献+

结合基于梯度的振铃评价算法的总变分最小化图像分块复原法 被引量:8

A Total-Variation Majorization-Minimization Sectioned Restoration Algorithm with Gradient Ringing Metric Image Quality Assessment
原文传递
导出
摘要 为了消除退化函数随空间变化发生变化模糊图像分块复原法子块之间的不平滑拼接缝,提出了一种结合了基于梯度的振铃评价算法梯度振铃评价(GRM)的总变分(TV)最小化分块复原法。根据图像分布及退化类型将模糊图像划分为矩形、环形或其他形状的子块,图像子块之间要留有一定的重叠区;然后对每一个图像子块进行复原,GRM方法是基于图像梯度结构相似度的图像质量评价算法,以GRM作为TV复原算法迭代过程中的收敛条件,可以更好地控制复原图像的振铃;最后去除复原图像子块含振铃波纹的重叠区,拼接得到完整图像。并以矩形分块及环形分块为例,证明该方法可以很好地抑制图像边界振铃效应,克服分块复原法本身的缺陷,得到拼接平滑的完整图像。 For eliminating the ringing artifacts between the sub-frames of the sectioned restoration algorithm for images with space-variant point spread function (SVPSF), the paper introduces a sectioned restoration algorithm, which bases on total variation (TV) majorization-minimization restoration algorithm and gradient ringing metric (GRM) image quality assessment approach. Firstly, the SVPSF-blurred image is divided into rectangular sections, circular sections or any other, which relies on the distribution of the degradation function, with some overlapped- regions. Then, each sub-section is restored by TV restoration algorithm with GRM as the convergence limit of restoration iteration. The GRM method is helpful to identify ringing of restored image, which relies on the similarity of the gradients of two images. After removing the overlapped regions, the sub-frames are spliced together to construct the composite full image. Taking the restorations of the rectangular-section and circular-section SVPSF- blurred images as examples, the paper proves that the algorithm is good at suppressing ringing artifacts. Consequently a better image with smooth splicing is obtained. The drawback of the sectioned restoration algorithm is overcomed.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第11期3025-3030,共6页 Acta Optica Sinica
基金 国家937计划(2009CB24006) 国家863计划(2006AA12Z107)资助课题
关键词 图像处理 图像复原 空间变化点扩展函数 分块复原算法 总变分最小化方法 基于梯度的振铃评价算法 image processing image restoration space-variant point spread function sectioned restorationalgorithm total-variation majorization-minimization algorithm gradient ringing metric image quality assessment
  • 相关文献

参考文献21

  • 1Gonzalez R. C, Woods R. E. Digital Image Processing [M]. Beijing: Publishing House of Electronics Industry, 2002.
  • 2Alexander A. S. Space-variant image motion degradation and restoration[C]. IEEE, 1972, 60(7): 854-861.
  • 3Gregory M. Robbins, Thomas S. Huang. Inverse filtering for linear shift-variant imaging systems [C]. IEEE, 1972, 60(7) : 862-872.
  • 4Alexander A, Sawchuk. Space-variant image restoration by coordinate transformations [J]. J. Opt. Soc. Am., 1974, 64(2) : 138-144.
  • 5H. J. Trusselt, B. R. Hunt. Image restoration of space variant blurs by sectioned methods [J]. IEEE Trans. Acoustics, Speech Signal Process, 1978, 26:608-609.
  • 6H. J. Trussel, B. R. Hunt. Sectioned methods for image restoration [J]. IEEE Trans. Acoustics, Speech Signal Process, 1978, 26:157-164.
  • 7Thomas P. Costello, Wasfy B. Mikhael. Efficient restoration of space-variant blurs from physical optics by sectioning with modified wiener filtering [J]. Digital Signal Process., 2003, 13(1): 1-22.
  • 8Y. P. Guo, H. P. Lee, C. L. Teo. Blind restoration of images degraded by space-variant blurs using iterative algorithms for both blur identification and image restoration[J]. Image and Vision Comput. , 1997, 15:399-410.
  • 9Junmo Kim, Andy Tsai, Mujdat Cetin et al.. A curve evolution-based variational approach to simultaneous image restoration and segmentation [C]. IEEE ICIP, 2002, 1: 1-109-1-112.
  • 10Leah Bar, Nir Sochen, Nahum Kiryati. Restoration of images with piecewise space-variant blur [M]. Berlin Heidelberg : Springer-Verlag, 2007, 4485:533-544.

二级参考文献10

  • 1刘晓辉,郭成安,胡家升.惯性约束聚变中环孔编码图像恢复的改进维纳滤波方法[J].光学学报,2004,24(8):1045-1050. 被引量:16
  • 2胡边,饶长辉.增量维纳滤波法在波前探测解卷积中的应用[J].光学学报,2004,24(10):1305-1309. 被引量:6
  • 3Wenhan Jiang, Mingguan Li, Guomao Tao et al.. Adaptive optical image compensation experiments on stellar objects[J]. Opt. Engng., 1995, 34(1): 15-20
  • 4R. C. Cannon. Global wavefront reconstruction using Shack Hartmannsensors[J]. J. Opt. Soc. Am. A, 1996, 12(9): 2031-2039
  • 5L. M. Mugnier, C. Robert, J. M. Conan et al.. Regularized multiframe myopic deconvolution from wavefront sensing[C].Proc. SPIE, 1999, 3763:134-144
  • 6Laurent M. Mugnier, Clelia Robert, Jean Marc Conan. Myopic deconvolution from wave-front sensing[J].J. Opt. Soc. Am. A, 2001, 18(4): 862-872
  • 7Jean Marc Conan, I.aurent M. Mugnier, Thierry Fusco et al. Myopic deconvolution of adaptive optics images by use of object and point spread function power spectra[J].Appl. Opt. , 1998, 37(21):4614-4622
  • 8Rafael C.Gonzalez,Richard E.Woods,阮秋琦,阮宇智译.数字图象处理[M].第二版,北京:电子工业出版社,2003.175-220
  • 9William Hadley Richardson. Bayesian based iterative method of image restoration[J]. J. Opt. Soc. Am., 1972, 62(1): 55-59
  • 10饶长辉,张学军,姜文汉.基于哈特曼-夏克波前探测的图像解卷积:室内结果[J].光学学报,2002,22(7):789-793. 被引量:10

共引文献11

同被引文献100

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部