期刊文献+

抗混叠塔型变换的构造 被引量:3

Construction of Non-Aliasing Pyramidal Transform
下载PDF
导出
摘要 针对Contourlet变换存在的频谱混叠,提出了一种抗混叠塔型变换,即Non-aliasing Pyramidal Transform-NA-D变换.NAP变换由抗混叠塔式滤波器组(Non-aliasing Filter Banks:NPFB)和方向滤波器组(Directional Filter Banks:DFB)组成,NPFB首先将图像分解为多个不同分辨率的细节子带和一个低频子带,DFB再将各细节子带分解为方向子带.通过设计满足Nyquist采样定理的滤波器,NA-D变换有效地抑制了Contourlet变换的频谱混叠,基函数不仅具有"多分辨率"、"多方向"、"局域性"等特性,满足各向异性尺度关系,而且空频域正则形和局域性均明显优于Contourlet变换.硬阈值去噪实验的结果表明,NAP变换能够更为稀疏的表示图像,并在去噪性能上较Contourlet变换有较大提高. A non-aliasing Pyramidal transform, namely NAP transform,is presented to avoid the frequency aliasing of Contourlet transform. NAP transform consists of non-alia,sing pyramidal filter banks (NPFB) and DFB. In this paper, we firstly represent the definition and specific parameter setting of NPFB in the frequency domain. NPFB decomposes image into an approximation subband and several detail subbands with different resolutions; whilst DFB decomposes the detail subbands into directional subbands. Not only has the basis function of NAP transform a variety of characteristics such as multi-resolution,multi-direction,localization to meet demands of anisotropy scale relations, but also are their regularity and localization better than those of Contourlet transform in the spatial domain. Results from the experiments of image denoising show that NAP transform can represent image more sparsely and has a significant improvement from the aspect of image denoising, compared with Comourlet transform.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第11期2510-2514,共5页 Acta Electronica Sinica
基金 重庆市自然科学基金(No.2009BB2188)
关键词 CONTOURLET变换 抗混叠塔式滤波器组 基函数 图像去噪 contourlet transform non-aliasing pyramidal filter banks basis function image denoising
  • 相关文献

参考文献9

  • 1S Mallat著,杨力华,等译.信号处理的小波导引[M].北京:机械工业出版社,2002.
  • 2焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 3E J Candes. Ridgelets: Theory and application[D]. USA: Stanford University, 1998.
  • 4M N Do,M Vetterli. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans. on Image Processing,2005,14(12) :2091 - 2106.
  • 5P J Burr, E H Adelson. The laplacian pyramid as a compact image code [J]. IEEE Trans on Communication, 1983,31 (4) :532-540.
  • 6R H Bamberger,M J T Smith.A filter bank for the directional decomposition of images: Theory and design[ J]. IEEE Trans on Signal Processing, 1992,40(4) :882 - 893.
  • 7T T Nguyen,S Oraintara. The multiresolution directional filterbanks[ D]. USA: The University of Texas,2006.
  • 8Y Lu, M N Do. A new contourlet transform with sharp frequency localization [C]. IEEE International Conference on Image Processing, Atlanta, USA, 2006,2:1629 - 1632.
  • 9Yi Chen. Design and Application of Quincunx Filter Banks [D]. USA: University of Victoria, 2006.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献231

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部