期刊文献+

不确定载荷下的桁架结构拓扑优化 被引量:4

Truss topology optimization with uncertain loading scenarios
下载PDF
导出
摘要 对带有不确定扰动载荷的桁架结构拓扑优化问题进行了研究.将不确定载荷表示成有界凸集,从而把不确定性问题转化为一个确定性问题.构造了凸集载荷下以体积为约束的柔度最小化模型,该优化模型的实质是在高维椭球内计算最大柔度最小问题.由于采用传统优化模型存在计算上的困难,对凸集载荷进行了数学处理,并据此构造了半定规划形式的优化模型以便求解.优化结果相对于给定载荷的刚度虽然略低,但对不确定的扰动载荷却具有一定的承载能力.算例表明通过半定规划法构造的考虑扰动载荷作用下的优化结果鲁棒性较佳,结构形式更接近于实际工程结构. A new model of truss topology optimization (TTO) considering uncertain ( in size and direction) loading scenarios was presented. The uncertain loading was modeled as bounded convex sets, and the uncertain model was transformed to a deterministic model. The TTO was formulated as minimization of the compliance subject to volume constraints, and the nature of this type of optimization is to minimizing maximum compliance in high dimensional ellipsoid. The traditional model considering convex sets is hard to solve, and TTO with convex sets was modeled as semidefinite programming (SDP) to overcome this special difficulty. The compliance both to given loading scenarios and a small occasional was simultaneously optimized in SDP model and optimum result showed that the compliance of the truss were slightly reduced respect to given loads, but the optimum topology of the truss is more robust and more practical than that with non-uncertain loading scenarios from the engineering viewpoints.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第10期1170-1173,1178,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家973基金资助项目
关键词 桁架 拓扑优化 不确定载荷 鲁棒 truss design topology optimization uncertain loading robustness
  • 相关文献

参考文献10

  • 1Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications [J]. Math Program, 2002, B92 : 453 - 480.
  • 2Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization[J]. Structural and Multidiseiplinary Optimization, 2004, 26 : 295 - 307.
  • 3Yi Ping, Cheng Gengdong. Further study on efficiency of sequential approximate programming for probabilistic structural design optimization [ J ]. Structural and Muhidisciplinary Optimization, 2008,35:509 - 522.
  • 4Ben-Tal A, Ghaoui L El, Nemirovski A. Robust semidefinite programming [ C ]//Wolkowiez H, Saigal R, Vandenberghe L. Handbook on Semidefinite Programming. Netherlands: Kluwer Academic Publishers, 2000.
  • 5Ben-Tal A, Bendsoe M P. A new method for optimal truss topology design [ J]. SIAM Journal on Optimization, 1993, 3:322 -358.
  • 6Wolkowicz H, Saigal R, Vandenberghe L. Handbook of semidefinite programming: theory, algorithms, and applications [ M ]. Netherlands: Kluwer Academic Publishers, 2000.
  • 7Chaerani D. Modeling robust design problems via conic optimization [ D ]. The Netherlands: Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, 2006.
  • 8Ben-Tal A, Nemirovski A. Robust convex optimization [ J ]. Math Oper Res, 1998, 23 (4) :769 - 805.
  • 9Potra F A, Sheng R. A superlinearly convergent primal-dual infeasible interior point algorithm for semidefinite programming [J]. SIAM Journal on Optimization, 1998, 8(4) :1007 -1028.
  • 10Ghaoui El L, Lebret O F. Robust solutions to uncertain semidefinite programs [ J]. SIAM Journal on Optimization, 1998, 9:33 -52.

同被引文献43

  • 1徐斌,姜节胜,闫云聚.具有频率约束的桁架结构可靠性拓扑优化[J].应用力学学报,2001,18(z1):45-49. 被引量:9
  • 2朱朝艳,刘斌,张延年,郭鹏飞.复合形遗传算法在离散变量桁架结构拓扑优化设计中的应用[J].四川大学学报(工程科学版),2004,36(5):6-10. 被引量:14
  • 3姜冬菊,张子明.桁架结构拓扑和布局优化发展综述[J].水利水电科技进展,2006,26(2):81-86. 被引量:8
  • 4姜冬菊,王德信.离散变量桁架结构拓扑优化设计的混合算法[J].工程力学,2007,24(1):112-116. 被引量:8
  • 5Calafiore G C, Dabbene F.Optimization under uncertainty with applications to design of truss structures[J].Structural and Multidisciplinary Optimization.2008, 35(3):189-200.
  • 6Ben-Tal A, Nemirovski A.Robust truss topology design via semidefinite programming[J].SIAM Journal on Optimization.1997, 7(4):991-1016.
  • 7De Gournay F, Allaire G, Jouve F.Shape and topology optimization of the robust compliance via the level set method[J].Esaim-Control Optimisation and Calculus of Variations, 2008, 24(1):43-70.
  • 8Alvarez F, Carrasco M.Minimization of the expected compliance as an alternative approach to multiload truss optimization[J].Structural and Multidisciplinary Optimization.2005, 29(6):470-476.
  • 9Carrasco M, Ivorra B, Ramos A.A variance-expected compliance model for structural optimization[J].Journal of Optimization Theory and Applications.2012, 152(1):136-151.
  • 10Dunning P D, Kim H A, Mullineux G.Introducing loading uncertainty in topology optimization[J].AIAA Journal.2011, 49(4):760-768.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部