期刊文献+

基于BBN的故障定位技术

BBN-based fault localization technique
下载PDF
导出
摘要 故障定位的目的是帮助程序员寻找引发失效的原因或故障位置,以加快调试过程.故障和失效间的关系往往非常复杂,难以直接描述故障到失效的转化.分析了采用差异分析的方法,提出基于可疑模式,构建故障推理贝叶斯网络,节点由可疑模式及其方法调用者构成;介绍了贝叶斯网络构建算法,各个相关概率的定义及BBN(Bayesian BeliefNetwork)中各个边的条件概率计算公式.基于推理算法,得到包含故障的模块,并计算得到每个模块包含故障的概率.提出评价方法,并进行了实验验证,取得了平均0.761的定准率和0.737的定全率,定位结果良好有应用价值. Fault localization techniques help programmers find out the locations and the causes of the faults and accelerate the debugging process. The relation between the fault and the failure is usually complicated, making it hard to deduce how a fault causes the failure. At present, analysis of variance is broadly used in many recent correlative researches. A Bayesian belief network (BBN) for fault reasoning was constructed based on the suspicious pattern, whose nodes consist of the suspicious pattern and the callers of the methods that constitute the suspicious pattern. The constructing algorithm of the BBN, the correlative probabilities, and the formula for the conditional probabilities of each arc of the BBN were defined. A reasoning algorithm based on the BBN was proposed, through which the faulty module can be found and the probability for each module containing the fault can be calculated. An evaluation method was proposed. Experiments were executed to evaluation the fault localization technique. The data demonstrated that 0. 761 in accuracy and 0. 737 in recall on average were achieved by this technique. It is very effective in fault localization and has high practical value.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第10期1201-1205,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60603039)
关键词 故障定位 差异 模式发现 概率 fault location differentiation pattern recognition probability
  • 相关文献

参考文献15

  • 1Andreas Z, Ralf H. Simplifying and isolating failure-inducing input[J]. IEEE Transactions on Software Engineering, 2002, 28(2) :183 -200.
  • 2Mary J H, Gregg R, Kent S, et al. An empirical investigation of the relationship between spectra differences and regression faults [J]. Journal of Software Testing, Verification, and Reliability, 2000, 10(3) :171 - 194.
  • 3Morell L J. A theory of fault-based testing[J]. IEEE Transactions on Software Engineering, 1990,16( 8 ) :844 - 857.
  • 4Voas J M. PIE: a dynamic failure-based technique[J]. IEEE Trans Software Eng, 1992, 18(8) : 717 -727.
  • 5James A J, Mary J H, John S. Visualization of test information to assist fault localization [ C ] // 24th International Conference on Software Engineering ( ICSE 2002 ). Florida: ACM, 2002 : 467 - 477.
  • 6Shinji K, Akira N, Keisuke N, et al. Experimental evaluation of program slicing for fault localization[J]. Empirical Software Engineering, 2002 ,7 ( 1 ) : 49 - 76.
  • 7Margaret A F. Fault localization through execution traces[ D ]. USA : Georgia Institute of Technology, 2002.
  • 8Manos R, Steven P R. Fault localization with nearest neighbor queries[ C] //18th IEEE International Conference on Automated Software Engineering ( ASE 2003). Montreal: IEEE Computer Society, 2003:30 - 39.
  • 9James A J, Mary J H. Empirical evaluation of the tarantula automatic fault-localization technique [ C ] // 20th IEEE/ACM International Conference on Automated Software Engineering ( ASE 2005 ). California : ACM, 2005:273 - 282.
  • 10Wu Ji, Jia Xiaoxia, Liu Chang, et al. A statistical model to locate faults at input level[ C ] //IEEE 19th International Conference on Automated Software Engineering (ASE 2004). Linz: IEEE Computer Society, 2004:274-277.

二级参考文献13

  • 1陶俊勇,温熙森,杨定新,陶利民.车载挠性SINS/GPS组合导航系统研究[J].中国惯性技术学报,1999,7(4):17-20. 被引量:8
  • 2Stephenson T A. An introduction to bayesian network theory and usage[R]. IDIAP-RR 00-03, 2000.
  • 3Coper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J]. Artificial Intelligence. 1990, 42(3): 393-405.
  • 4Lepar V, Shenoy P P. A comparison of Lauritzen and Spiegelhalter, Hugin and Shafer and Shenoy architectures for computing marginals of probability distributions[A]. Proc. On Uncertainty in artificial Intelligence[C], Morgan Kaufmann Publishers, 1998: 328-337.
  • 5Madsen A L, Jensen F V. A junction tree inference based on lazy evaluation[A]. The Proc. of the Fourteenth Conf. on Uncertainty in Artificial Intelligence[C], Morgan Kaufmann Publishers, 1998: 362-369.
  • 6Skaanning C, Jensen F V, Kj?rulff U. Printer troubleshooting using Bayesian networks[A]. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE) 2000[C], New Orleans, USA, 2000-06.
  • 7Poole D. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities[A]. Proc. 13th International Joint Conference on Artificial Intelligence[C], France, 1993: 606-612.
  • 8刘刚,杨世凤,马跃进,邝朴生.设备故障诊断步骤优化的研究[J].农业工程学报,1997,13(4):125-129. 被引量:8
  • 9杨定新,陶利民,陶俊勇,温熙森.捷联惯导系统电路故障诊断的故障树分析法[J].航空电子技术,1999,30(4):32-37. 被引量:3
  • 10刘志强.因果关系,贝叶斯网络与认知图(英文)[J].自动化学报,2001,27(4):552-556. 被引量:37

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部