期刊文献+

多值随机微分方程中的耦合方法及其在Harnack不等式中的应用

Coupling Methods for Multivalued Stochastic Differential Equations and Applications to Harnack Inequality
下载PDF
导出
摘要 通过鞅方法构造耦合算子,研究了多值随机微分方程中的耦合方法。同时应用耦合方法结合G irsanov定理证明了多值随机微分方程解的Harnack不等式。 Through the martingale approach, the construction of coupling operators is explored and coupling methods in multivalued stochastic differential equations are studied. Also Harnack inequality is obtained by applying coupling methods combined with Girsanov's theorem.
作者 巫静
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期1-6,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10871215)
关键词 多值随机微分方程 耦合 耦合算子 耦合时间 鞅方法 HARNACK不等式 强Feller性 muhivalued stochastic differential equation coupling coupling operator coupling time martingale approach Harnack inequality strong Feller
  • 相关文献

参考文献11

  • 1CHEN M, LI S F. Coupling methods for multidimensional diffusion processes[J]. Annals of Probability, 1989, 17 (1): 151-177.
  • 2GRIFFEATH D. Coupling methods for Markov Processes [J]. Adv In Math, 1978, 2: 1-43.
  • 3LINDVALL T. On coupling of diffusion Process [ J ]. J Appl Probab, 1983, 20 : 82 - 93.
  • 4LINDVALL T, ROGERS L C G. Coupling of multidimensional diffusions by reflection [ J]. Annals of Probability, 1986, 14 : 860 - 872.
  • 5ZHANG X C. Exponential ergodicity of non-Lipschitz stochastic differential equations [ J ]. Proceedings of American Mathematical Society, 2009, 137:329-337.
  • 6KREE P. Diffusion equation for muhivalued stochastic differential equations [ J ]. Journal of Functional Analysis, 1982, 49:73 -90.
  • 7CEPA E. Equations differentielles stochastiques multivoques [ J]. Lecture Notes in Mathematics, Sem Prob, 1995, ⅩⅩⅨ: 86- 107.
  • 8黄志远.随机分析学基础[M].2版,北京:科学出版社,2001.
  • 9STROOCK D W, VARADHAN S R S. Multidimensional diffusion processes [ M ]. New York: Springer, 1979.
  • 10WANG F Y. Harnack inequality and applications for stoehastic generalized porous media equations [ J]. Annals of Probability, 2007, 35(4): 1333- 1350.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部