期刊文献+

关于一类曲线收缩流的保积性和能量衰减性的研究

On the Area-Preserving and Energy-Decaying Properties for a Class of Curve Shortening Flows
下载PDF
导出
摘要 对一类带接触角的曲线收缩流的性质进行了研究。利用Garcke和Novick-Cohen的能量定义,证明了其具有保积性和能量衰减性。稳态解在能量达到最小值时取得。 The properties of a class of curve shortening flows with contact angle is studied. With the energy defined by Garcke and Novick-Cohen, it is proved that they have the area-preserving and energy-decaying properties. The stationary solution is achieved at the minimal energy.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期7-9,共3页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 中山大学青年教师科研启动基金资助项目(3171914)
关键词 曲线收缩流 三重接点 Young’s LAW curve shortening flow triple junction Young's law
  • 相关文献

参考文献10

  • 1ELLIOTT C M, GARCKE H. Existence results for diffusive surface motion laws [ J ]. Advances in Mathematical Sciences and Application, 1977, 7 : 467 - 490.
  • 2CHEN X. The Hele-Shaw problem and area-preserving curve-shortening motions [ J ]. Arc Rat Mech Anal, 1993,123:117 - 151.
  • 3STERNBERG P, ZIEMER W P. Local minimisers of a three-phase partition problem with triple junctions [ J ]. Proc R Soc Edinburgh, 1994, 124A: 1059 - 1073.
  • 4ESCHER J, MAYER U F, SIMONETT G. The surface diffusion flow for immersed hypersurfaces [ J ]. SIAM J Math Anal, 1998,29 : 1419 - 1433.
  • 5GARCKE H, NOVICK-COHEN A. A singular limit for a system of degenerate Cahn-Hilliard equations [ J ]. Adv Differential Equations ,2000,5 (4 - 6 ) :401 - 434.
  • 6ESCHER J, FENG Z Y. Exponential stability of equilibria of the curve shortening flow with contact angle [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems, Series A : Mathematical Analysis, 2007,14 ( 2 ) : 287 - 299.
  • 7ESCHER J,FENG Z Y. On the curve shortening flow with triple junction [J]. Functional Analysis and Evolution Equations, The Gunter Lumer Volume,2007:223 - 238.
  • 8ITO K, KOHSAKA Y. Three-phase boundary motion by surface diffusion: stability of a mirror symmetric stationary solutions [ J ]. Interfaces & Free Boundaries, 2001,3 (1) :45 -80.
  • 9LUNARDI A. Analytic semigroups and optimal regularity in parabolic problems [M]. Birkhauser, 1995.
  • 10GURTIN M E. Thermodynamics of evolving phase boundaries in the plane [ M ]. Oxford : Clarendon Press, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部