摘要
对一类带接触角的曲线收缩流的性质进行了研究。利用Garcke和Novick-Cohen的能量定义,证明了其具有保积性和能量衰减性。稳态解在能量达到最小值时取得。
The properties of a class of curve shortening flows with contact angle is studied. With the energy defined by Garcke and Novick-Cohen, it is proved that they have the area-preserving and energy-decaying properties. The stationary solution is achieved at the minimal energy.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第6期7-9,共3页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
中山大学青年教师科研启动基金资助项目(3171914)