期刊文献+

嵌入数据结构信息的单类支持向量机及其线性规划算法 被引量:4

Embedding Target Data's Structural Distribution Information into One-Class SVM and Its Linear Programming Algorithm
下载PDF
导出
摘要 针对现有基于超平面的单类分类器未同时考虑目标数据全局与局部信息的不足,通过在单类支持向量机One-C lass SVM(OCSVM)算法中加入类内散度以反应目标数据的全局信息,提出了结构化单类支持向量机Structured OCSVM(SOCSVM),不仅使之具有全局与局部化学习的特点,同时也为诸多的SVM算法嵌入数据内在结构这类先验信息提供了统一框架。为进一步提高运算效率,在SOCSVM二次规划求解基础上,通过最小化目标数据均值到超平面的函数距离,提出了线性规划算法,同时也避免了SOCSVM必须以原点作为负类代表的不足。人工和真实数据集上的实验结果验证了嵌入目标数据结构信息的SOCSVM及其线性规划算法的有效性。 In order to distinguish the target class from outliers accurately, One-Class Classifier (OCC) should take into account the prior knowledge of the target class. However, One-Class SVM ( OCSVM), the state-of-the-art OCC, neglects the data's distribution information while finding the optimal hyperplane. Structured OCSVM (SOCSVM), the novel proposed OCC, alleviates this problem by embedding the within-class scattered matrix of the target data into OCSVM. As a result, SOCSVM not only overcomes the above disadvantage of the OCSVM, but also provides a unified framework for the present SVM algorithms how to consider intrinsic structure of the data. Moreover, to improve the efficiency of SOCSVM, linear programming algorithm called SlpOCSVM is proposed to instead of the quadratic programming solving for SOCSVM. Through minimizing the functional distance of the data's mean to the hyperplane, the optimal hyperplane is attracted automatically to the place of the minimum positive half space without borrowing the origin as a representative of the outlier anymore . The experiment results on toy problem and real data sets demonstrate the advantage of SOCSVM and its linear programming algorithm.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期10-17,共8页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60603029 60703016 60803049)
关键词 单类分类器 支持向量机 结构信息 二次规划 线性规划 one-class classifier support vector machine structured information quadratic programming linear programming
  • 相关文献

参考文献12

  • 1TAX D. One-class classification: Concept-learning in the absence of counter-examples [ D ]. Delft University of Technology : Delft, 2001.
  • 2TAX D, DUIN R P. Support vector data description [ J ]. Machine Learning, 2004, 54( 1 ) : 45 -66.
  • 3SCHOLKOPF B, PLATT J C, SHAWE-TAYLOR J. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13(7 ): 1443-1471.
  • 4TSANG I W, JAMES T K, LI S. Learning the kernel in Mahalanobis one-class support vector machines [ C ]. Proceedings of the International Joint Conference on Neural Networks (IJCNN'06) , 2006, Vancouver, BC: IEEE Computer Society, 1169 - 1175.
  • 5LANCKRIET G R G, GHAOUI L E, JORDAN M. Robust novelty detection with single-class MPM [ C ]. Advances in Neural Information Processing Systems, MIT Press, 2002:905-912.
  • 6LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. A robust minimax approach to classification [J]. J Machine Learning Research, 2002, 3: 555 - 582.
  • 7JUSZCZAK P. Learning to recognise: a study on oneclass classification and active learning [ D ]. Delft University of Technology: Delft, 2006.
  • 8CAMPBELL C, BENNETT K P. A linear programming approach to novelty detection [ C ]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001.
  • 9CRISTIANINI N, TAYLOR J S. An introduction to support vector machines and other Kernel-based learning methods [ M ]. Cambridge:Cambridge University Press, 2000:90 - 120.
  • 10DUDA R O, HART P E, STORK D G. Pattern classification [ M ]. 2nd Edition, New York: John Wiley & Sons, 2001.

同被引文献54

  • 1滕龙,曾储惠.模式识别技术在桥梁状态评估与安全监测中的应用[J].中国铁道科学,2005,26(4):47-51. 被引量:5
  • 2王兆辉,樊可清,李霆.系统辨识在桥梁状态监测中的应用[J].中南公路工程,2006,31(3):159-163. 被引量:5
  • 3唐和生,薛松涛,陈镕,晋侃.序贯最小二乘支持向量机的结构系统识别[J].振动工程学报,2006,19(3):382-387. 被引量:17
  • 4TAX D, DUIN R P. Support vector domain description [ J ]. Pattern Recognition Letters, 1999, 20 ( 11-13 ) - 191-1199.
  • 5SCHOLKOPH B, PLATr J C, SHAWER Taylor J. Estimating the support of a high-dimensional distribution [ J ]. Neural Computation, 2001, 13 (7) : 1443-1471.
  • 6DOLIA A, HARRIS C J, SHAWER Taylor J, et al. Kernel ellipsoidal trimming [ J ]. Computational Statistics and Data Analysis, 2007, 52(1): 309-324.
  • 7LANCKRIET G, GHAOUI L E, JORDAN M. Robust novelty detection with single-class MPM [ C ]//Advances in Neural Information Processing Systems, BECKER S, THRUN S, OBERMAYER K Eds. Cambridge: MIT Press, 2003.
  • 8WANG D, YEUNG D S, TSANG E C. Structured one- class classification [ J ]. IEEE Trans on SMC-Part B: Cybernetics, 2006, 36 (6) : 1283-1294.
  • 9RATSCH G, MIKA S, SCHOLKOPH B, et al. Constructing boosting algorithms from SVMs: an application one-class classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9) : 1184- 1199.
  • 10LOBO M, VANDENBERGHE L,BOYD S, et al. Applications of second-order cone programming [ J ]. Linear Algebra Appl, 1998, 284(1-3) : 193-228.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部