摘要
设(R,m)是Noether局部环,是交换的且有单位元.若模M满足:(i)Supp(M)V(a),(ii)ExtiR(R/a,M)是弱Laskerian的,对所有i≥0,则称M是a-weakly cofin ite的.给出了判定一个模是a-weakly cofin ite的条件,并对ExtiR(R/a,Hta(M))的弱Laskerian性做了讨论(i=0,1,2时).
Let R be a commutative Noether local ring with identity. We say that M is a-weakly coilnite if it satisfies ( i ) Supp (M) lohtain in V( a ), (ii) Ext^iR ( R/a, M) is weakly Laskerian for all i≥0. We get a result that when a module is a-weakly cofinite, also we discuss the weakly Laskerianess of Ext^iR (R/a, H^ta(M) )(i=0,1,2).
出处
《苏州大学学报(自然科学版)》
CAS
2009年第4期32-35,共4页
Journal of Soochow University(Natural Science Edition)