期刊文献+

Weakly cofinite模及其局部上同调模的Ext函子的弱Laskerian性

Weakly cofinite modules and weakly Laskerianess of extension functors of local cohomology modules
下载PDF
导出
摘要 设(R,m)是Noether局部环,是交换的且有单位元.若模M满足:(i)Supp(M)V(a),(ii)ExtiR(R/a,M)是弱Laskerian的,对所有i≥0,则称M是a-weakly cofin ite的.给出了判定一个模是a-weakly cofin ite的条件,并对ExtiR(R/a,Hta(M))的弱Laskerian性做了讨论(i=0,1,2时). Let R be a commutative Noether local ring with identity. We say that M is a-weakly coilnite if it satisfies ( i ) Supp (M) lohtain in V( a ), (ii) Ext^iR ( R/a, M) is weakly Laskerian for all i≥0. We get a result that when a module is a-weakly cofinite, also we discuss the weakly Laskerianess of Ext^iR (R/a, H^ta(M) )(i=0,1,2).
作者 张亮
出处 《苏州大学学报(自然科学版)》 CAS 2009年第4期32-35,共4页 Journal of Soochow University(Natural Science Edition)
关键词 weaklycofinite模 局部上同调模 弱Laskerian性 weakly cofinite modules local cohomology modules weakly laskerianess
  • 相关文献

参考文献6

  • 1Brodmann M P, Sharp R Y. Local Cohomology: an algebraic introduction with geometric applications [ M ]. Cambridge : Cambridge Univ Press, 1998.
  • 2Divaani-Aazar K, Marl A. Associated primes of local cohomology modules [ J ]. Proc Amer Math Soc,2005,133 ( 3 ) :655 - 660.
  • 3Divaani-Aazar K, Marl A. Associated primes of local cohomology modules of weakly laskerian modules [ J ]. Comm Algebra, 2006, 34:681 - 690.
  • 4Dibaei M T,Yassemi S. Associated primes and cofiniteness of local cohomology modules[ J ]. Mamu Math,2005,177:195 -205.
  • 5Dibaei M T, Yassemi S. Finiteness of extension functors of local cohomology modules [ J ]. Comm Algebra,2006,34:3097 -3101.
  • 6Melkersson L. Modules cofinite with respect to an ideal[J]. J Algebra,2005,285:649 -668.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部