期刊文献+

热压制备硅酸铝纤维/TCP生物FGM的微观结构与性能 被引量:2

Microstructure and performance of alumina silicate fibres/TCP biological FGM fabricated by hot pressing technique
原文传递
导出
摘要 采用热压工艺制备了硅酸铝纤维/TCP生物功能梯度材料(FGM)。采用X射线衍射分析、扫描电镜、EDAX线扫描能谱分析、密度分析及洛氏硬度分析对FGM进行了研究,结果表明:纤维含量分布呈轴向对称梯度变化。FGM整体完好,无破损或裂纹出现。FGM在宏观上呈现较模糊的梯度分布,微观上则表现出成分的连续变化。TCP基体与纤维结合紧密。FGM中TCP与硅酸铝纤维及热压模之间均未发生化学反应生成杂质化合物,HA至TCP的相变是因为羟基磷灰石的分解产生。随纤维含量增加,FGM各梯度层的断裂形式由脆性断裂逐渐转变为韧性断裂,且韧性程度随纤维含量增加而增强。各梯度层硬度和相对密度随纤维含量的增加而提高,且在纤维含量为60 vol%时达到最高,分别为92.7 MPa和86.5%。 Alumina silicate fibres/TCP biological functionally gradient material(FGM) was fabricated by hot pressing technique.X-ray diffraction analysis,SEM,EDAX linear scanning analysis,density and hardness test were adopted to carry out the research of the FGM.The results show that fibre contents distribution changes symmetrically in the FGM.No flaws and breakages appear in the FGM.FGM presents indistinct gradient distribution in macrostructure and continuous component changes in microstructure.TCP matrix combines with silicate fibres tightly in the FGM.Decomposition of hydroxyapatite leads to phase transformation from HA to TCP and no chemical reaction happens among TCP and fibre and the hot pressing die.With the increase of fibre contents,the fracture way changes from brittle fracture to toughness fracture and the toughness degree increases.The hardness and relative density are enhanced with the increase of fibre contents.60 vol% fibres gradient layer behaves the highest value with hardness and relative density equal to 92.7 MPa and 86.5%,respectively.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第5期137-142,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(50604017)
关键词 硅酸铝纤维 功能梯度材料(FGM) 热压 微观结构 性能 alumina silicate fibres functionally gradient materials(FGM) hot pressing microstructure performance
  • 相关文献

参考文献14

二级参考文献78

共引文献60

同被引文献93

  • 1张瑞,李慕勤,沈兰花,王健平.复合玻璃梯度涂层种植体的实验研究[J].中国口腔种植学杂志,2012,17(4):151-154. 被引量:1
  • 2邹俭鹏,阮建明,黄伯云,周忠诚,刘玉龙.HA-316L不锈钢纤维非对称功能梯度生物材料制备与显微组织[J].无机材料学报,2005,20(5):1181-1188. 被引量:8
  • 3张波,郭艾.磨损颗粒引发假体周围骨溶解的机制及药物治疗进展[J].中国骨质疏松杂志,2007,13(8):596-599. 被引量:6
  • 4Pompe W, Worch H, Epple M, et ol. Functionally graded materi- als for biomedical applications[J]. Mater Sci Eng A, 2003, 362 (1-2): 40-60.
  • 5Chu C, Zhu J, Yin Z, et al. Structure optimization and properties of hydroxyapatite-Ti symmetrical functionally graded biomate- rial[J]. Mater Sci Eng A, 2001, 316(1-2): 205-205.
  • 6Fujii T, Tohgo K, Araki H, et al. Fabrication and strength evalua- tion of biocompatible ceramic- metal composite materials[J]. Jo- urnal of Solid Mechanica and Materials Engineering, 2010, 4 (11): 1699-1699.
  • 7Watari F, Yokoyama A, Saso F, et al. Fabrication and properties of functionally graded dental implant[J]. Composites Part B: En- gineering, 1997, 28(1-2): 5-11.
  • 8Watari F, Yokoyama A, Omori M, et ol. Biocompatibility of mate- rials and development to functionally graded implant for bio-m- edical application [J]. Composites Science and Technology, 2004, 64(6): 893-908.
  • 9Kondo H, Yokoyama A, Omori M, et al. Fabrication of titanium nitride/apatite functionally graded implants by spark plasma si- nterin[J]. Materials Transactions, 2004, 45(11): 3156-3162.
  • 10Miao X. Observation of microcracks formed in HA/316L compo- sites[J]. Materials Letters, 2003, 57(12): 1848-1848.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部